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e Image classification: 10000 images, 10 categories.

e Each image: 32x32 pixels x24 bits = 3072 bytes
= Images are points x € R”, D = 3072.

e 50000 images already labeled:
Training set: {z;, y; }i=1, .. ~, N =50000,y;, €{1,...,10}.
Test set: {z;,77}i=1.....10000-

e Goal: find map =+ y(xz)€{1,....,10}, optimal in some sense.

Training stage, test stage.
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Roadmap: Four attempts at classification

e Round 1: Naive attempts
[P distance. Least squares.

e Round 2: Linear classifiers

e Round 3: Sloppy linear classifiers

e Round 4: (Kind of) Non linear classifiers
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Nearest Neighbours

e Easiest technique.
e Training: “Nothing” to do! v
e Testing:

1. Take a test sample .

2. Compute d(x, z;) for every training sample ;. Set: i* = argmin d(x, z;)
i=1,...,N

3. Assign =+ y(x;+) (label of closest match).

e This sucks. Badly. ~60% error rate for /{-nearest neighbours. Why?

Take some random guy:
e Fix it or forget about it?

High testing time, poor performance, lots of memory required.
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Least Squares

o 1-of-K encoding for labels: y=(0,...,1,...,0) € {0, 1}**. All training labels: Y € R <%

e Each class has a linear model
yi(T) =wg - x +b=wy-T, where T=(z,1),w=(w,b) e RPT1.
o Bringing all of them together, after training the parameters 1/ € R(P+1)x k.
y(T) = WTT ="class scores” for datum 7€ RP 1.

The class predicted is argmax{yx(T): k=1, ..., K }.

e To train, minimise £ (W) :% (X — Y% X € RV all training samples,
- W= (XTX)'XTY=XxtY.

e Prediction: y(z)=Y" xt'z Easy but mostly wrong.
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The Perceptron

e Perceptron criterion

For some w & R” ! and any sample z:
x is correctly classified by w< y; w-x > 0.

The error is Zx‘e/\/t y; - T <0, so we want to minimise

Alternatively:
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The Perceptron

e Optimization of the Perceptron criterion.

With Stochastic Gradient Descent (more later): Pick x; € M randomly, update:
Wy1 =W — M\t VEL (W) =Wt + A\t yi T

e Interpretation: @ is adjusted to account for misclassifications only.

e Properties:
a) Each step not guaranteed to reduce overall error.
b) Convergence guaranteed to some solution if data linearly separable.
c) Solution will depend on wy, by.

d) Doesn’'t minimise generalisation error = worse generalisation.
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Intermezzo: Infamous XOR

e Essential assumption very easy to violate:

e The perceptron will fail miserably.

e Let's try to fix it.
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Projection of x; onto II: p; =x; + 7; = A= |pi — x4].

|w]

e pcll=w-pi+b=0=w-z;+7; |w|+b=0
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Optimal margins

Let's compute the distance to a hyperplane I1:={z € R”:w -2 +b=0}.

Projection of x; onto II: p; =x; + 7; = A= |pi — x4].

|w]

o picll=w pi+b=0=w-z;+ 7 ]w\+b:O:>7~i::F(%-xi+|7b|>>O.

e Define the geometric margin of x; as ~; := y,(i L X4 +L>.

|w] |w]
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Optimal margin classifier

We want to maximize the margin to all points in the training set:

b
jw|

argmax min ;(x;,w,b) =argmax min y;| — - x;+
w.b  i=1,..,N wb =L, N\ |w]

Maximal margins and two closest points
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Optimal margin classifier

The maximal margin is attained at:

(w*,b*) = argmax min ;(z;, w,b)

w,b 1=1,...,

= argmax{nyIR '7-—y-<i-x'+i)> =1 N}
w,b FT I Q] el )7

= argmax{lEIRJF:yi(w-aﬁi—kb)2&,75:1,...,]\7,’?:7]w[}
w,b ’w’

= argmax{LEpri(w-xi—kb)}l,i:l, ,N}
w,b ’w’

— argmln{l\w\z:yiw Ti=>1,1=1, ,N}
w,b 2
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Optimal margin classifier

e We have the cost function

f(w):%]wP subject to  y,w-T; > 1,Vi.

e Optimisation (possible) using off-the-shelf Quadratic Programming routines / software.

e But... Infamous XOR! (Later: in the dual formulation, target function —c0).
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e Relax the constraints. Instead of vy, - T; > 1, require:
yiw-@>1—{{i, 5120, iZl,...,N, (PC)

with a new cost function to minimise:
| N
f@)=5wP+CY" & C>0 (P))
i=1

The &, are called slack variables. One per training sample!

e The greater &; are, the more the margin constraints may be violated, but this is penalized
in the cost. “C’ = o0” means strict margins. Lower C allows for more slack.

e Better generalisation performance.
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Slack variables

What are these slack variables?
yiw-@-}l—&, &20, iZl,...,N,

e The & fulfill

= 0 if x; is on or inside the correct margin.
L ly; —wW-T;| otherwise.

e Therefore:

¢, =1 if x; is on the decision boundary (y(z;) =w-T; =0),
& >1 if x; is misclassified.
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The primal problem

e We will optimize the (unconstrained) primal problem

N
argminl]w\Q%—CZ max {0,1 —y; - T; }. (P)
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The primal problem

e We will optimize the (unconstrained) primal problem

N
argminl]w\Q%—CZ max {0,1 —y; - T; }. (P)
wb 2 i=1

e Which we optimise using
o Gradient Descent, sort of (costly).
o Stochastic Gradient Descent (fast).

e We will also write down a dual problem and optimize it using
o Sequential Minimal Optimization.

o Stochastic Coordinate Descent.
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Optimization in the primal

e First compute the gradient of (P)

N
Vo f(@) = (w,0) + CZ Vemax {0,1— 4,0 T;},
1=1
where:
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Optimization in the primal

e First compute the gradient of (P)

N
Var f(W) = (w,0)+C ) Vgmax{0,1—y;w- T},
i=1
where:
0 ifl—y,w-7; <0,
Vwmax{...}: [O, 1] ifl—yiw-fi:(),
—1; T; otherwise.

e We actually have a Subgradient Method, with update rule

N
W1 = ((1— Ap) wy, by) + Atcz X(0,00)(1 = Y W - T5) y; T
1=1
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Optimization in the primal
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Optimization in the primal

e SubGrad is very costly: at each step, evaluate on all V samples.

e Enter: Stochastic Gradient Descent. Convergence theory hard, black-box use “easy’:

Algorithm SGD

1. Pick x; at random.
2. Update the parameters according to

wt+1:wt—)\tvwl(:c,-,wt,bt) and bt+1:bt—>\t8bl(a:i,wt,bt).

where \; — 0 for t — oo and 5" A7 < oo, Y A\, =o0. [because.. ]
3. Go to 1. until ...7 (e-acc. sol, validation)
Alternatively:
2'. Mini-batch update: for some r € N, pick x;, ..., x; at random and do

Wt1 = Wt — )\t Z le(:c@-j, ’UJt).

j=1
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What we have until now

After round 3:
e Optimal Margin Classifier for /' =2 classes.
e Data can be linearly separable or not.
e Two optimisation algorithms for the primal problem: SubGrad and SGD.
Coming up:
e Round 4: The dual formulation of the Optimal Margin Classifier.

e Two efficient algorithms for the dual: Sequential Minimal Optimization and Stochastic
Coordinate Ascent.

e Finale: Handling multiple classes. Examples.
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The dual problem

e Use Lagrange multipliers «;, 3; to incorporate the constraints (7.) into the cost (Py)

1 N N N
Lw,b &0, f) =g wf+CY &= ai(yw T-1+&) -)_ i

1=1
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The dual problem

e Use Lagrange multipliers «;, 3; to incorporate the constraints (7.) into the cost (Py)

1 N N N
Lw,b &0, f) =g wf+CY &= ai(yw T-1+&) -)_ i

i=1
Then solve the dual problem

max min L(w,b, &, «a, ().
Oé,/B,Oéz>0’LU,b,€
l

::_g(aaﬁ)
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The dual problem

e Use Lagrange multipliers «;, 3; to incorporate the constraints (7.) into the cost (Py)

L(w,b, &, o, B):= \w\2+02& Zaz Y- T — 1+ &) —

1=1

-
&
I

Then solve the dual problem

max min L(w,b, &, «a, ().
aaﬁaal>0wab7€
| |

_g(aaﬁ)

e We can explicitly compute g(ca, ) = g(«), then switch to a min problem:

N
érzlg(l)Q Zl 0O Y T T — Z a;,  S.t. Zl a;y; =0, and 0 < o; < C.
1,7 1=

g(@)
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The dual problem

e Use Lagrange multipliers «;, 3; to incorporate the constraints (7.) into the cost (Py)

L(w,b, &, o, B):= \w\2+02& Zaz Y- T — 1+ &) —

1=1

-
&
I

Then solve the dual problem

max min L(w,b, &, «a, ().
aaﬁaal>0wab7€
| |

_g(aaﬁ)

e We can explicitly compute g(ca, ) = g(«), then switch to a min problem:

N
érzlg(l)Q Zl 0O Y T T — Z a;,  S.t. Zl a;y; =0, and 0 < o; < C.
1,7 1=

g(@)

e Optimisation later...
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The dual problem

e Strong duality = Recover w*,b”* from o/ through

*x * *x
w —g alyixr;, b =..

The output of the classifier is:
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e Strong duality = Recover w*,b”* from o/ through

*x * *x
w —g alyixr;, b =..

The output of the classifier is:

N ©)
w*-:c+b*:z ;i Y; ;- X+ b*.
i=1
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The dual problem

e Strong duality = Recover w*,b”* from o/ through

*x * *x
w —g alyixr;, b =..

The output of the classifier is:

N ©)
w*-aH—b*:Z ;i Y; ;- X+ b*.
i=1

e What did we win? Enter Messrs. Karush-Kuhn-Tucker:

af =0 & y,w*-T;>1 & x;is “away’,
O<ar<C & y;w*-T,=1 < x;is on the margin,
af)=C & y,w* - T;<1 < ux,;is inside the margin.

Most samples will be away. The others (by design few) are the support vectors.
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Intermezzo: The kernel trick

e But wait!
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Intermezzo: The kernel trick

e But wait!

w*-r+b*= Z Y, ;- x+b*
aﬁ&o

is still worse than a single product w™ - x + b*!

e Substitute ¢(7;) ¢(7;) for ;- T, for a [large class] of ¢s. The output will be:

a’b#o :k(x'mx)
e We optimise:
1 =
a,Tr'Ialolézr‘lBOg Z & Oéjyz¢(fz_) ¢(TJ)_Z i
1,5=1 =k(T;,T;) =1
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Intermezzo: The kernel trick

e But wait!

w*-r+b*= Z Y, ;- x+b*
aﬁ&o

is still worse than a single product w™ - x + b*!

e Substitute ¢(7;) ¢(7;) for ;- T, for a [large class] of ¢s. The output will be:

;70 =k(x;,x)
e \We optimise:
| N
i 5 3 auugls) 95) -3
7=1 =k(z;,T;) '

e This kernel trick “embeds” the problem in a high(er) dimensional feature space (but as a
lower dimensional set, no magic).
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Intermezzo: The kernel trick

o ¢: X — F will typically be costly to compute and store.
E.g. o(x1,22)= (:cl, V2 21 x9, 332) Then

w-(/ﬁ(a:)—kb:wlaz%—kwg\/§x1x2+w3x%+b.

The decision boundary will be a conic.

o Ifw=>" _,a;¢(z;) then

T)+b=>)  a;d(x;) p(x) +b

iel =k(x;,x)

In the example:

k(x,y)= (331,\/5331562,332) (yl,\/—y1y2,y2):(3? y)?.
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Intermezzo: The kernel trick

o ¢: X — F will typically be costly to compute and store.
E.g. o(x1,22)= (:cl, V2 21 x9, 332) Then

w-(/ﬁ(a:)—kb:wlaz%—kwg\/§x1x2+w3x%+b.

The decision boundary will be a conic.

o Ifw=>" _,a;¢(z;) then

T)+b=>)  a;d(x;) p(x) +b

iel =k(x;,x)

In the example:
k(z,y)= (331,\/5331332,3?2) (yl,\/_y1y2yy2):(33 3/)2-

e Two typical kernels:

k(z,y)=(z-y+1)", k(z,y)=e cl#-vl

Intermezzo 24/34



The dual problem
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o Optimises two variables at each step.

o Optimisation can be performed analytically.
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The dual problem

e Optimising the quadratic form Zf\’]jzl o; oy k(T;,T;) involves an O(N?#) matrix!
e Optimisation using Sequential Minimal Optimisation

o Optimises two variables at each step.

o Optimisation can be performed analytically.

o No matrix multiplications = fewer precision issues.

o No storage of O(N?) matrix.
e Optimisation using Stochastic Coordinate Descent

o Optimises one variable at each step.

o Clear stopping criterion.
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Sequential Minimal Optimization

e Idea: pick the minimal amount of variables to optimise.
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Sequential Minimal Optimization

e Idea: pick the minimal amount of variables to optimise.

Constraint: Zivzl «; y; = 0 = one variable not enough. Pick two = 2D problem.

e W.lo.g. fix aj,as then as=a—say, a=alas,...,)

T2 T
C H
|2 1
L
L - S
0 C 0 C
Y1 F Y= ae=a+ o Y1=Y2=>Qe=0a— Q]
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Sequential Minimal Optimization

e Write g(«) as a function of «, differentiate, equate to 0, plug 1, &> from previous step:

y1[(W- 21— y1) — (W22 — y2)]
; .

af =a1 —
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e Write g(«) as a function of «, differentiate, equate to 0, plug 1, &> from previous step:

y1[(W- 21— y1) — (W22 — y2)]
; .

af =aq —

e Clip it to the bounding box [0, C'|*: the solution is af = max {0, min {C', a{}}.
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e Write g(«) as a function of «, differentiate, equate to 0, plug 1, &> from previous step:

y1[(W- 21— y1) — (W22 — y2)]
; .

af =a1 —

e Clip it to the bounding box [0, C'|*: the solution is af = max {0, min {C', a{}}.

e Compute 3 from this value using that o =a —sai =as+sa1 — saj:
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Sequential Minimal Optimization

e Write g(«) as a function of «, differentiate, equate to 0, plug 1, &> from previous step:

y1[(W- 21— y1) — (W22 — y2)]
; .

af =a1 —

e Clip it to the bounding box [0, C'|*: the solution is af = max {0, min {C', a{}}.
e Compute 3 from this value using that o =a —sai =as+sa1 — saj:

a3 =dg+ s (a1 —ai).

e Problem: how to choose which «; (i.e. which indexes) to optimise?
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Sequential Minimal Optimization

e Heuristics for choosing the next best o, «; to optimise:
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Sequential Minimal Optimization

e Heuristics for choosing the next best o, «; to optimise:
o Quter loop: go through all «; violating KKT.
o Quter loop: then, go through all non-clipped «; violating KKT
—  Until all satisfy KKT within ¢ (most CPU time in non-clipped samples).

o Inner loop: choose «/; to maximise the step taken (k(-,-) costly, so approximate).

o Corner cases

—  Duplicate input vectors = k semidefinite = more heuristics.

—  More...
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Sequential Minimal Optimization

e Heuristics for choosing the next best o, «; to optimise:
o Quter loop: go through all «; violating KKT.
o Quter loop: then, go through all non-clipped «; violating KKT
—  Until all satisfy KKT within ¢ (most CPU time in non-clipped samples).
o Inner loop: choose «/; to maximise the step taken (k(-,-) costly, so approximate).
o Corner cases
—  Duplicate input vectors = k semidefinite = more heuristics.

—  More...

e Recompute the threshold...

e Profit!
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Afterword: Multiple classes

e Easiest approach: One versus the rest.
Train K binary classifiers. Let them vote.

But caution! Ambiguities and unbalanced training samples.

One versus all

One versus all

e Similar approach: One versus one.

Train (g) classifiers. Let them vote.

Again, caution.
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Afterword: Multiple classes

e Why not train for all classes simultaneously? Multiclass classifier.
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Afterword: Multiple classes

e Why not train for all classes simultaneously? Multiclass classifier.

Find W = (wy, ..., wg) EREXP beRE ¢ ERfXK minimising

N
C(W,b,f)::%W:WJrCZ S e

=1 ki?éyi
subject to (y; is the correct class for sample ;)

Wy,  Ti — Wk Ty 2 2 — &k, and & > 0.

(]
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Afterword: Multiple classes

e Why not train for all classes simultaneously? Multiclass classifier.

Find W = (wy, ..., wg) EREXP beRE ¢ ERfXK minimising

N
C(W,b,f)::%W:WJrCZ S e

=1 ki#yi
subject to (y; is the correct class for sample ;)

Wy,  Ti — Wk Ty 2 2 — &k, and & > 0.

(]

Equivalently, compute

N
! .
ar;gvx,rzln§W:W+C;:1 ,{éy‘ max {0, Wy, - T; — Wy - T; + 2}
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What next?

e SVNMs for regression problems.
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What next?

e SVNMs for regression problems.
e Paralellization techniques.
e Bayesian SVMs: the Relevance Vector Machine.

e Go to the beach.
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Available on request: the internet remembers everything! You'll need:

A C++11 compiler. Any recent version of GCC or CLANG should do.

e (CMake version >3.0.2.

e The Qt4 libraries if you want to try the examples with a graphical interface.

e The Armadillo linear algebra library, version >5.200. OpenBLAS is recommended.

e Optionally some datasets: I've used CIFAR-10 and MNIST.
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Happy TEXyacs-ing!




