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� Image classi�cation: 10000 images, 10 categories.

� Each image: 32x32 pixels x24 bits = 3072 bytes

) Images are points x2RD; D= 3072.

� 50000 images already labeled:

Training set: fxi; yigi=1;:::;N ; N = 50000; yi2f1; :::; 10g.

Test set: fxi; ??gi=1;:::;10000.

� Goal: �nd map x 7! y(x)2f1; :::; 10g, optimal in some sense.

Training stage, test stage.
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� Round 1: Naive attempts

lp distance. Least squares.

� Round 2: Linear classi�ers

� Round 3: Sloppy linear classi�ers

� Round 4: (Kind of) Non linear classi�ers
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� Easiest technique.

� Training: �Nothing� to do! �
� Testing:

1. Take a test sample x.

2. Compute d(x; xi) for every training sample xi. Set: i?= argmin
i=1;:::;N

d(x; xi)

3. Assign x 7! y(xi?) (label of closest match).

� This sucks. Badly. �60% error rate for K-nearest neighbours. Why?

Take some random guy: And do some nice modi�cation:

� Fix it or forget about it?

High testing time, poor performance, lots of memory required.
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� 1-of-K encoding for labels: y=(0; :::; 1; :::; 0)2f0; 1gK. All training labels: Y 2RN�K

� Each class has a linear model

yk(x)=wk �x+ b=wk �x; where x=(x; 1); w=(w; b)2RD+1:

� Bringing all of them together, after training the parameters W 2R(D+1)�K:

y(x)=WTx= �class scores� for datum x2RD+1:

The class predicted is argmaxfyk(x): k=1; :::;Kg.

� To train, minimise E(W )= 1

2
jXW ¡Y j2, X 2RN�K all training samples,

 W �=(X>X)¡1X>Y =X yY :

� Prediction: y(x)=Y >X y>x. Easy but mostly wrong.
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� Perceptron criterion

For some w 2RD+1 and any sample x:

x is correctly classi�ed by w, yiw �x> 0:

The error is
P

xi2M yiw �x< 0, so we want to minimise

Eper(w) :=¡
X
xi2M

yiw �xi:

Alternatively:

Eper(w)=
X
i=1

N

max f0;¡yiw �xig
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� Optimization of the Perceptron criterion.

With Stochastic Gradient Descent (more later): Pick xi2M randomly, update:

wt+1=wt¡�trEper
i (wt)=wt+�t yixi:

� Interpretation: w is adjusted to account for misclassi�cations only.

� Properties:

a) Each step not guaranteed to reduce overall error.

b) Convergence guaranteed to some solution if data linearly separable.

c) Solution will depend on w0; b0.

d) Doesn't minimise generalisation error ) worse generalisation.
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Intermezzo 10/34

� Essential assumption very easy to violate:

� The perceptron will fail miserably.

� Let's try to �x it.
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Let's compute the distance to a hyperplane � := fx2RD:w �x+ b=0g.

w

�

pixi

Projection of xi onto �: pi= xi� 
~i
w

jwj , 
~i := jpi¡ xij.

� pi2�)w � pi+ b=0)w �xi� 
~i jw j+ b=0) 
~i=�
�

w

jwj �xi+
b

jwj

�
> 0.

� De�ne the geometric margin of xi as 
i := yi

�
w

jwj �xi+
b

jwj

�
.
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We want to maximize the margin to all points in the training set:

argmax
w;b

min
i=1;:::;N


i(xi; w; b)= argmax
w;b

min
i=1;:::;N

yi

�
w
jw j �xi+

b
jw j

�
:

w

Maximal margins and two closest points
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The maximal margin is attained at:

(w?; b?) = argmax
w;b

min
i=1;:::;N


i(xi; w; b)

= argmax
w;b

�

 2R+: 
i= yi

�
w
jw j �xi+

b
jw j

�
> 
; i=1; :::; N

�
= argmax

w;b

�

̂
jw j 2R+: yi (w �xi+ b)> 
̂ ; i=1; :::; N ; 
̂= 
 jw j

�
= argmax

w;b

�
1
jw j 2R+: yi (w �xi+ b)> 1; i=1; :::; N

�
= argmin

w;b

�
1
2
jw j2: yiw �xi> 1; i=1; :::; N

�
:
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� We have the cost function

f(w)= 1
2
jw j2 subject to yiw �xi> 1;8i:

� Optimisation (possible) using o�-the-shelf Quadratic Programming routines / software.

� But... Infamous XOR! (Later: in the dual formulation, target function ¡1).
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� Who's ever seen linearly separable data?

� Relax the constraints. Instead of yiw �xi> 1, require:

yiw �xi> 1¡ �i; �i> 0; i=1; :::; N ; (Pc)

with a new cost function to minimise:

f(w)= 1
2
jw j2+C

X
i=1

N

�i; C > 0: (Pf)

The �i are called slack variables. One per training sample!

� The greater �i are, the more the margin constraints may be violated, but this is penalized
in the cost. �C =1� means strict margins. Lower C allows for more slack.

� Better generalisation performance.
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What are these slack variables?

yiw �xi> 1¡ �i; �i> 0; i=1; :::; N ;

� The �i ful�ll

�i=
�
0 if xi is on or inside the correct margin.
jyi¡w �xij otherwise.

� Therefore: �
�i=1 if xi is on the decision boundary (y(xi)=w �xi=0);
�i> 1 if xi is misclassi�ed.



The primal problem

Round 3: A better optimal margin classi�er 17/34

� We will optimize the (unconstrained) primal problem

argmin
w;b

1
2
jw j2+C

X
i=1

N

max f0; 1¡ yiw �xig: (P)



The primal problem

Round 3: A better optimal margin classi�er 17/34

� We will optimize the (unconstrained) primal problem

argmin
w;b

1
2
jw j2+C

X
i=1

N

max f0; 1¡ yiw �xig: (P)

� Which we optimise using



The primal problem

Round 3: A better optimal margin classi�er 17/34

� We will optimize the (unconstrained) primal problem

argmin
w;b

1
2
jw j2+C

X
i=1

N

max f0; 1¡ yiw �xig: (P)

� Which we optimise using

� Gradient Descent, sort of (costly).



The primal problem

Round 3: A better optimal margin classi�er 17/34

� We will optimize the (unconstrained) primal problem

argmin
w;b

1
2
jw j2+C

X
i=1

N

max f0; 1¡ yiw �xig: (P)

� Which we optimise using

� Gradient Descent, sort of (costly).

� Stochastic Gradient Descent (fast).



The primal problem

Round 3: A better optimal margin classi�er 17/34

� We will optimize the (unconstrained) primal problem

argmin
w;b

1
2
jw j2+C

X
i=1

N

max f0; 1¡ yiw �xig: (P)

� Which we optimise using

� Gradient Descent, sort of (costly).

� Stochastic Gradient Descent (fast).

� We will also write down a dual problem and optimize it using



The primal problem

Round 3: A better optimal margin classi�er 17/34

� We will optimize the (unconstrained) primal problem

argmin
w;b

1
2
jw j2+C

X
i=1

N

max f0; 1¡ yiw �xig: (P)

� Which we optimise using

� Gradient Descent, sort of (costly).

� Stochastic Gradient Descent (fast).

� We will also write down a dual problem and optimize it using

� Sequential Minimal Optimization.



The primal problem

Round 3: A better optimal margin classi�er 17/34

� We will optimize the (unconstrained) primal problem

argmin
w;b

1
2
jw j2+C

X
i=1

N

max f0; 1¡ yiw �xig: (P)

� Which we optimise using

� Gradient Descent, sort of (costly).

� Stochastic Gradient Descent (fast).

� We will also write down a dual problem and optimize it using

� Sequential Minimal Optimization.

� Stochastic Coordinate Descent.
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� First compute the gradient of (P)

rw f(w)= (w; 0)+C
X
i=1

N

rwmax f0; 1¡ yiw �xig;

where:

rwmax f:::g=

8<: 0 if 1¡ yiw �xi< 0;
[0; 1] if 1¡ yiw �xi=0;
¡yixi otherwise.

� We actually have a Subgradient Method, with update rule

wt+1=((1¡�t)wt; bt)+�tC
X
i=1

N

�(0;1)(1¡ yiwt �xi) yixi:
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� SubGrad is very costly: at each step, evaluate on all N samples.

� Enter: Stochastic Gradient Descent. Convergence theory hard, black-box use �easy�:

Algorithm SGD

1. Pick xi at random.
2. Update the parameters according to

wt+1=wt¡�trw l(xi; wt; bt) and bt+1= bt¡�t @bl(xi; wt; bt):

where �t! 0 for t!1 and
P
�t
2<1;

P
�t=1. [because...]

3. Go to 1. until ...? ("-acc. sol, validation)
Alternatively:
2'. Mini-batch update: for some r 2N, pick xi; :::; xir at random and do

wt+1=wt¡�t
X
j=1

r

rw l(xij; wt):
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After round 3:

� Optimal Margin Classi�er for K =2 classes.

� Data can be linearly separable or not.

� Two optimisation algorithms for the primal problem: SubGrad and SGD.

Coming up:

� Round 4: The dual formulation of the Optimal Margin Classi�er.

� Two e�cient algorithms for the dual: Sequential Minimal Optimization and Stochastic
Coordinate Ascent.

� Finale: Handling multiple classes. Examples.
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� Use Lagrange multipliers �i; �i to incorporate the constraints (Pc) into the cost (Pf)

L(w; b; �; �; �) := 1
2
jw j2+C

X
i=1

N

�i¡
X
i=1

N

�i (yiw �xi¡ 1+ �i)¡
X
i=1

N

�i �i:

Then solve the dual problem

max
�;�;�i>0

min
w;b;�

L(w; b; �; �; �)

=:¡g(�;�)

:

� We can explicitly compute g(�; �)= g(�), then switch to a min problem:

min
�i>0

1
2

X
i;j=1

N

�i�j yixi �xj¡
X
i=1

N

�i

g(�)

; s.t.
X
i=1

N

�i yi=0; and 06�i6C:

� Optimisation later...



The dual problem

Round 4: Support Vector Machines 22/34

� Strong duality ) Recover w?; b? from �i
? through

w?=
X

�i
? yixi; b?= :::

The output of the classi�er is:



The dual problem

Round 4: Support Vector Machines 22/34

� Strong duality ) Recover w?; b? from �i
? through

w?=
X

�i
? yixi; b?= :::

The output of the classi�er is:

w? �x+ b?=
X
i=1

N

�i yixi �x
(!)

+ b?:



The dual problem

Round 4: Support Vector Machines 22/34

� Strong duality ) Recover w?; b? from �i
? through

w?=
X

�i
? yixi; b?= :::

The output of the classi�er is:

w? �x+ b?=
X
i=1

N

�i yixi �x
(!)

+ b?:

� What did we win? Enter Messrs. Karush-Kuhn-Tucker:8<: �i
?=0 , yiw? �xi> 1 , xi is �away�;

0<�i
?<C , yiw? �xi=1 , xi is on the margin;

�i
?=C , yiw? �xi< 1 , xi is inside the margin.

Most samples will be away . The others (by design few) are the support vectors.
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� But wait!

w? �x+ b?=
X
�i=/ 0

�i
? yixi �x+ b?

is still worse than a single product w? �x+ b?!

� Substitute �(xi) �(xj) for xi �xj, for a [large class] of �s. The output will be:

w? � �(x)+ b?=
X
�i=/ 0

�i
? yi�(xi) � �(x)

=k(xi;x)

+ b?

� We optimise:

min
�;r;�i>0

1
2

X
i;j=1

N

�i�j yi�(xi) � �(xj)
=k(xi;xj)

¡
X
i=1

N

�i:

� This kernel trick �embeds� the problem in a high(er) dimensional feature space (but as a
lower dimensional set, no magic).
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� �:X !F will typically be costly to compute and store.

E.g. �(x1; x2)=
¡
x1
2; 2
p

x1x2; x2
2
�
. Then

w � �(x)+ b=w1x1
2+w2 2

p
x1x2+w3x2

2+ b:

The decision boundary will be a conic.

� If w=
P

i2I�i�(xi) then

w � �(x)+ b=
X
i2I

�i�(xi) �(x)
=k(xi;x)

+ b:

In the example:

k(x; y)=
¡
x1
2; 2
p

x1x2; x2
2
�
�
¡
y1
2; 2
p

y1 y2; y2
2
�
=(x � y)2:

� Two typical kernels:

k(x; y)= (x � y+1)n; k(x; y)= e¡c jx¡y j
2
:
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� Optimising the quadratic form
P

i;j=1
N �i�j yi k(xi; xj) involves an O(N2) matrix!

� Optimisation using Sequential Minimal Optimisation

� Optimises two variables at each step.

� Optimisation can be performed analytically.

� No matrix multiplications ) fewer precision issues.

� No storage of O(N2) matrix.

� Optimisation using Stochastic Coordinate Descent

� Optimises one variable at each step.

� Clear stopping criterion.
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� Idea: pick the minimal amount of variables to optimise.

Constraint:
P

i=1
N

�i yi=0) one variable not enough. Pick two ) 2D problem.

� W.l.o.g. �x �1; �2, then �2= a¡ s�1, a= a(�3; :::; )

C

C

H
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� Write g(�) as a function of �1, di�erentiate, equate to 0, plug �~1; �~2 from previous step:

�1
?=�~1¡

y1 [(w~ �x1¡ y1)¡ (w~ �x2¡ y2)]
�

:

� Clip it to the bounding box [0; C]2: the solution is �1�=max f0;min fC;�1?gg.

� Compute �2� from this value using that �2�= a¡ s�1�=�~2+ s�~1¡ s�1�:

�2
�=�~2+ s (�~1¡�1�):

� Problem: how to choose which �i (i.e. which indexes) to optimise?
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� Heuristics for choosing the next best �i; �j to optimise:

� Outer loop: go through all �i violating KKT.

� Outer loop: then, go through all non-clipped �i violating KKT

! Until all satisfy KKT within " (most CPU time in non-clipped samples).

� Inner loop: choose �j to maximise the step taken (k(�; �) costly, so approximate).

� Corner cases

! Duplicate input vectors ) k semide�nite ) more heuristics.

! More...

� Recompute the threshold...

� Pro�t!
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� Easiest approach: One versus the rest.

Train K binary classi�ers. Let them vote.

But caution! Ambiguities and unbalanced training samples.

� Similar approach: One versus one.

Train
�
K
2

�
classi�ers. Let them vote.

Again, caution.
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� Why not train for all classes simultaneously? Multiclass classi�er.

Find W =(w1; :::; wK)2RK�D; b2RK ; � 2R+
N�K minimising

C(W ; b; �) := 1
2
W :W +C

X
i=1

N X
k=/ yi

�ik;

subject to (yi is the correct class for sample xi)

wyi �xi¡wk �xi> 2¡ �ik; and �ik> 0:

Equivalently, compute

argmin
W;b

1
2
W :W +C

X
i=1

N X
k=/ yi

max f0; wyi �xi¡wk �xi+2g:
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� SVMs for regression problems.

� Paralellization techniques.

� Bayesian SVMs: the Relevance Vector Machine.

� Go to the beach.
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Available on request: the internet remembers everything! You'll need:

� A C++11 compiler. Any recent version of gcc or clang should do.

� CMake version >3.0.2.

� The Qt4 libraries if you want to try the examples with a graphical interface.

� The Armadillo linear algebra library, version >5.200. OpenBLAS is recommended.

� Optionally some datasets: I've used CIFAR-10 and MNIST.
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Happy TEXMACS-ing!


