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Abstract We investigate energetically optimal configurations of thin structures with a pre-
strain. Depending on the strength of the pre-strain we consider a whole hierarchy of effective
plate theories with a spontaneous curvature term, ranging from linearised Kirchhoff to von
Kármán to linearised von Kármán theories. While explicit formulae are available in the lin-
earised regimes, the von Kármán theory turns out to be critical and a phase transition from
cylindrical (as in linearised Kirchhoff) to spherical or saddle-shaped (as in linearised von
Kármán) configurations is observed there. We analyse this behaviour with the help of a
whole family (Iθ

vK)θ∈(0,∞) of effective von Kármán functionals which interpolates between
the two linearised regimes. We rigorously show convergence to the respective explicit min-
imisers in the asymptotic regimes θ → 0 and θ →∞. Numerical experiments are performed
for general θ ∈ (0,∞) which indicate a stark transition in a critical region of parameters θ .
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1 Introduction

The topic of this paper is motivated by experimental observations on optimal energy config-
urations in thin (heterogeneous) structures with a pre-strain. The simplest example of such
a structure is the classical bimetallic strip which consists of two strips of different materi-
als with different thermal expansion coefficients joined together throughout their length. If
heated or cooled, due to the misfit of equilibria, internal stresses develop. The flat reference
configuration is no longer optimal and the strip bends in order to reduce elastic energy. This
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behavior can effectively be modelled with a 1d energy functional comprising a temperature
dependent spontaneous curvature term.

In this paper we will investigate thin layers whose two lateral dimensions are much larger
than their very small height and whose flat reference configuration is subject to internal
stresses (one speaks of pre-strained or pre-stressed bodies). Examples of such structures
are heated materials (with inhomogeneous expansion coefficients as in the bimetallic strip
referred to above or homogeneous materials with a temperature gradient), crystallisations
on top of a substrate as in epitaxially grown layers, or biological materials whose internal
misfit is caused by swelling and growing tissue. Our main focus will be on multilayered
heterogeneous plates, for which the effective plate theories have been provided in [11]. Our
findings, however, apply equally to different situations as long as they are described by the
same effective functionals, cf. Remark 1 below.

There is, by now, a considerable body of work on thin plates with pre-strain. We mention,
with no attempt to be exhaustive, [12, 24, 25, 28, 29, 38, 39] and refer to our companion
paper [11] for further discussion and references. As our primary interest is to model multi-
layers, our set-up is quite different from those of the aforementioned contributions where the
pre-strain depends only on the in-plane variables. In the bending dominated regime, mod-
els in which both pre-strain and material parameters were allowed to vary in the thin film
direction were already discussed in [38, 39]. The recent paper [29] also considers a variety
of scaling regimes for thickness dependent pre-strains, while our companion paper gener-
alises those results by allowing for thickness dependent material properties, in particular, for
mismatching equilibria in multilayers with different elastic moduli. Except for finite bend-
ing configurations in [38, 39], however, it appears that little attention has been devoted so
far to the issue that is our main focus here—namely, how the choice of the scaling regime
influences the geometry of the energy-minimizing configurations.

As a matter of fact, the situation is much more complicated and interesting for two di-
mensional plates than for one dimensional strips. It has been found that the assumed shape
depends on the strength of the pre-strain and the aspect ratio of the specimen: Large pre-
strains in very thin layers tend to cause cylindrical shapes whereas smaller pre-strains in
thicker layers lead to spherical caps, [13–15, 22, 30, 37]. To explain this observation one ar-
gues that locally the energy is best released if a spherical shape is assumed. If, however, the
aspect ratio is very small, i.e., the lateral dimensions are very large compared to the thick-
ness, then this leads to geometric incompatibilities: non-zero Gauß curvature introduces a
change of the metric which by far has too high elastic energy. In contrast, cylindrical shapes
do not lead to such incompatibilities.

A thorough theoretical understanding of this mechanism through which ‘misfit’ of equi-
libria is converted into mechanical displacement is not only interesting from a mathematical
point of view. In view of applications it has proved to constitute a convenient and feasible
method to access and manipulate objects even at the nanoscale. By way of example we men-
tion experiments on the self-organised fabrication of nano-scrolls, as reported in [19, 32,
35, 40]. On the macroscopic scale, recent experiments on self-folding of two dimensional
elastomer polydimethylsiloxane figures into rather complex three dimensional structures are
described in [13].

The aim of this paper is to shed light on the geometry of energetically optimal configura-
tions of pre-strained heterostructures with the help of two dimensional plate theories. More
precisely, we consider effective plate theories for multilayers with reference configuration
�h = ω × (−h/2, h/2), 0 < h � 1, whose (small) misfit pre-strain is described by a matrix
hα−1Bh, scaling with h, α > 2.

The particular case α = 2 with a misfit of the order h of the aspect ratio has been in-
vestigated in [7, 38, 39]. The appropriate plate theory is the nonlinear Kirchhoff theory (in
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the finite bending regime) and energy minimisers turned out to be (portions of) cylinders
whose possible winding directions and radii are determined explicitly. Therefore, in order
to be able to encounter different behavior one has to consider weaker scalings of the misfit.

In [11]—based on the homogeneous case explored in [16]—we have found a whole hi-
erarchy of effective plate theories for the scalings α > 2. Suitably rescaled, one obtains only
three different limiting plate theories: the linearised Kirchhoff theory for α ∈ (2,3), the von
Kármán theory for α = 3 and the linearised von Kármán theory for α > 3. With a view to
our present investigation, we have moreover derived a fine scale θ in the critical von Kármán
scale which interpolates continuously between the two linearised theories.

For such small misfits one is lead to describe a deformation yh :�h →R
3 in terms of the

scaled and averaged in-plane, respectively, out-of-plane displacements

uh
i (x1, x2) := 1

(
√

θh)γ

∫ 1/2

−1/2

(
yh

i (x1, x2, x3)− xi

)
dx3, i = 1,2,

vh(x1, x2) := 1

(
√

θh)α−2

∫ 1/2

−1/2
yh

3 (x1, x2, x3)dx3,

(1)

where θ ≡ 1 unless α = 3 and

γ =
{

2(α − 2) if α ∈ (2,3],
α − 1 if α ≥ 3.

A limiting plate theory in terms of the limiting quantities (u, v) is then derived as the �-
limit of the 3d nonlinearly elastic energy, rescaled by h1−2α , cf. [11]. This energy rescaling
is tailored so as to capture the effect of the misfit to leading order: Larger rescalings would
lead to infinite energy contributions caused by the pre-strain whereas at smaller rescalings
the effect of the misfit becomes negligible. For a minimiser (u, v) of the limiting theory
one obtains the shape of an optimal configuration at finite 0 < h � 1: After descaling, its
x3-averaged displacement is given approximately by

(x1, x2) 	→
(
(
√

θh)γ u(x1, x2), (
√

θh)α−2v(x1, x2)
)
.

Since γ > α − 2, the in-plane components are indeed much smaller than the out-of-plane
component. In his sense, the shape is to leading order described by v : ω →R only.

In the linearised regimes our results give the following picture: If α < 3, degenerate
parabolas (infinitesimal parts of cylinders) are seen to be optimal, whereas for α > 3, non-
degenerate parabolas (infinitesimal parts of an elliptical cap or a saddle) are energy minimis-
ers. Only in the latter case, however, the minimiser is unique (up to affine terms). Yet, even
in case α < 3 it turns out the geometric shape is uniquely determined as an infinitesimal
part of a cylinder while the winding direction and radius may have several optimal values.
In both cases we explicitly determine these minimisers. A basic observation shows that for
α = 3 these configurations are still asymptotically optimal in the ‘almost linearised’ regimes
θ 
 1 and θ � 1, respectively.

The von Kármán regime is much more subtle. We focus on a prototypical functional in
order to understand better the material response if the misfit (and hence θ ) is increased from
0 to a finite value. We show that for finite, although small, values of θ there is a unique
branch of global minimisers emanating from a spherical cap. For a further study for gen-
eral values of θ ∈ (0,∞) we then rely on computer experiments. To this end, we develop a
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penalised, nonconforming finite element discretisation using P 1 elements and employ pro-
jected gradient descent to solve the ensuing nonlinear problems while ensuring constraints
are met. We first show �-convergence of the discrete problems to the continuous one, then
investigate the minimisers in their dependence on θ . Interestingly, our results seem to indi-
cate a stark change of material response in a critical parameter region, showing a symmetry
breaking ‘phase transition’ from a nearly spherical cap to an approximate cylinder.

The occurrence of the three characteristic types of optimal shapes in dependence of the
energy scaling, and thus the magnitude of deflections in relation to the aspect ratio, seems
to be in line with experimental results (see the above cited literature). In particular, this
is exemplified by the isotropic bilayers with isotropic misfit described in [13]. Here, even
though the mismatch of equilibria of the two layers is fixed, different scaling regimes can be
explored by varying the aspect ratio h. At constant thickness, this simply amounts to testing
samples of varying lateral dimensions. Indeed, ‘thick’ films with rather large aspect ratio
are seen to form shallow spherical caps whereas specimens at very small aspect ratio are
observed to prefer cylindrical configurations, cf. [13]. A transition between caps and (parts
of) cylinders is found with deflections being of the order of the film thickness (corresponding
to the von Kármán regime). In fact, at the experimentally observed ‘bifurcation points’ the
measured curvature is close to the aspect ratio, see [13, Fig. 7].

Outline

We begin by recalling our main results from [11] in order to provide the appropriate plate
theories in Sect. 2. There we also identify the effective elastic moduli and spontaneous cur-
vature terms explicitly so as to transform the problem into a more amenable form to identify
minimisers. We then discuss the linearised regimes α ∈ (2,3) and α > 3 as well as the
asymptotic von Kármán regimes θ → 0 and θ →∞ in Sect. 3. The structure of minimisers
for small θ is investigated in Sect. 4. Finally, Sect. 5 contains our numerical findings.

2 Effective Plate Theories

We first recall the main results of our contribution [11] on a hierarchy of plate theories
for pre-strained multilayers derived from non-linear three dimensional elasticity by �-
convergence. We then determine the effective (homogenised) elastic moduli and correspond-
ing quadratic energy densities of the plates in terms of the moments of the pointwise elastic
constants of the layers.

2.1 Dimension Reduction for Pre-strained Multilayers

Working exactly in the setting of [11] we consider a thin domain

�h := ω × (−h/2, h/2)⊂R
3,

where ω ⊂ R
2 is bounded with Lipschitz boundary, 0 < h � 1, subject to a deformation

w :�h →R
3. Changing variables from x3 to x3/h we obtain a deformation mapping y(x)=

w(x1, x2, hx3) and the energy per unit volume

Eh
α(y)=

∫
�1

Wh
α (x3, ∂1y, ∂2y,h−1∂3y),



Energy Minimising Configurations of Pre-strained Multilayers

where the elastic energy density Wh
α depends on a scaling parameter α ∈ (2,∞) and is given

by

Wh
α (x3,F )= W0(x3,F (I + hα−1Bh(x3))), F ∈R

3×3,

for α �= 3, Bh : (−1/2,1/2) →R
3×3 describing the internal misfit and W0 the stored energy

density of the reference configuration. For α = 3 we include an additional parameter θ > 0
controlling further the amount of misfit in the model:

Wh
α=3(x3,F )= W0

(
x3,F

(
I + h2

√
θBh(x3)

))
, F ∈R

3×3.

We take W0 fulfilling the usual assumptions of smoothness around SO(3), frame invariance,
boundedness and quadratic growth which are detailed in [11]. After linearising around the
identity, one obtains the Hessian

Q3(t,F ) :=D2W0(t, I )[F,F ] = ∂2W0(t, I )

∂Fij ∂Fij

FijFij ,

for t ∈ (−1/2,1/2), F ∈R
3×3 and defines Q2 by minimising away the effect of transversal

strain on Q3:

Q2(t,G) := min
c∈R3

Q3(t, Ĝ+ c ⊗ e3),

for t ∈ (−1/2,1/2), G ∈ R
2×2, e3 = (0,0,1) ∈ R

3, and Ĝ ∈ R
3×3 having G as its upper

left 2 × 2 submatrix and zeros in the third column and third row. The functions Q2(t, ·),
t ∈ (−1/2,1/2), are quadratic forms on R

2×2 which are positive definite on the space of
symmetric 2×2 matrices R2×2

sym and vanish on antisymmetric matrices. Moreover, they satisfy
the bounds

Q2(t,G) ≤ C|G|2 ∀G ∈R
2×2 and Q2(t,G) ≥ c|G|2 ∀G ∈R

2×2
sym (2)

for constants c,C > 0 and a.e. t ∈ (−1/2,1/2). We assume that Bh → B in
L∞((−1/2,1/2);R3×3) and denote by B̌(t) the 2×2 matrix which arises from B(t) ∈R

3×3

by deleting its last row and last column. Then

B̌ ∈ L∞((−1/2,1/2);R2×2
)
. (3)

From Q2(t, ·) and B̌(t) we define the effective form:

Q2[E,F ] :=
∫ 1/2

−1/2
Q2(t,E + tF + B̌sym(t))dt (4)

for E,F ∈R
2×2, and its relaxation

Q
	

2(F ) := min
E∈R2×2

sym

∫ 1/2

−1/2
Q2(t,E + tF + B̌sym(t))dt (5)

for F ∈ R
2×2. (Note that since the positive semidefinite Q2(t, ·) vanishes on antisymmetric

matrices, we have Q2(t,E + tF + B̌(t)) =Q2(t,Esym + tFsym + B̌sym(t)).)
In [11] it is shown that h2−2αEh

α �-converges for the convergence of the averaged in-
plane and out-of-plane displacements (uh, vh) ⇀ (u,v) in W 1,2(ω;R3) modulo a global
rigid motion, cf. (1), to the following effective limiting functionals:
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• For the scaling α ∈ (2,3) as defined in [11] and convex ω, the linearised Kirchhoff energy
is given by

IlKi(v) :=
{

1
2

∫
ω
Q

	

2(−∇2v) if v ∈W
2,2
sh (ω),

∞ otherwise,
(6)

where W
2,2
sh (ω)= {v ∈W

2,2
sh (ω) : det∇2v = 0 a.e.}.

• For α = 3 we have the von Kármán type energy1

Iθ
vK(u, v) :=

⎧⎪⎨
⎪⎩

1
2

∫
ω
Q2[θ1/2(∇su+ 1

2∇v ⊗∇v),−∇2v]
if (u, v) ∈W 1,2(ω;R2)×W 2,2(ω;R),

∞, otherwise,

(7)

where ∇su = 1
2 (∇u+ (∇u)�) denotes the symmetrised gradient.

• Finally, in the regime α > 3 we have the linearised von Kármán energy

IlvK(u, v) :=

⎧⎪⎨
⎪⎩

1
2

∫
ω
Q2[∇su,−∇2v],

if (u, v) ∈W 1,2(ω;R2)×W 2,2(ω;R)

∞, otherwise.

(8)

Remark 1 The precise assumptions on Wh
α from [11] are not essential for the results of the

present contribution. In what follows we will only need that the Q2(t, ·), t ∈ (−1/2,1/2),
are quadratic forms on R

2×2 that vanish on antisymmetric matrices and satisfy (2) and that
B̌ satisfies (3).

The existence of minimisers of (6) (7) and (8) follows by a standard application of the
direct method or, in the setting of [11], as a direct consequence of �-convergence and com-
pactness.

2.2 Effective Moduli and Minimising Strains

This subsection serves to give explicit formulae relating the homogenised effective elastic
moduli found above to the zeroth, first and second moment in t of the individual Q2(t, ·).
We also identify their pointwise minimiser so as to rewrite the effective quadratic forms in
their most convenient form. The computations are completely elementary, we indicate the
main steps.

Because Q2 vanishes on antisymmetric matrices we may restrict our attention to F ∈
R

2×2
sym . From now on, we identify matrices E = (Eij )

2
i,j=1 ∈R

2×2
sym with vectors in R

3 via

E 	→ e := (E11,E22,E12), (9)

and analogously F 	→ f , B̌sym 	→ b, A 	→ a. Then, for each t ∈ (−1/2,1/2) there exists
some symmetric, positive definite matrix M(t) such that for all A ∈R

2×2
sym :

Q2(t,A) = a�M(t)a.

1As in [11] we slightly overload the notation in what would be a double definition of Ih
3 , using the letter in

the subindex to dispel the ambiguity.
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We define the moments of M as

M0 :=
∫ 1/2

−1/2
M(t)dt, M1 :=

∫ 1/2

−1/2
tM(t)dt, M2 :=

∫ 1/2

−1/2
t2M(t)dt.

It is easy to see that (2) implies that M0 and M2 are positive definite. We claim that also

M∗ :=M2 −M1M
−1
0 M1

is positive definite. To see this, fix � ∈R
2×2 and note that for all x ∈R

2 \ {0}
∫ 1/2

−1/2

∣∣(tM1/2(t)−M1/2(t)�
)
x
∣∣2 dt > 0

since
(
tM1/2(t)−M1/2(t)�

)
x = 0 for a.e. t would imply that (tI −�)x = 0 in contradiction

to � having at most two eigenvalues. Expanding the square we get

0 <

∫ 1/2

−1/2
x�(tI −�)�M(t)(tI −�)x dt

= x�(M2 −��M1 −M1�+��M0�
)
x

and, choosing �= M−1
0 M1,

0 < x�(M2 −M1M
−1
0 M1

)
x.

We now introduce a scalar β0 and vectors b1, b2 ∈R
3 by setting

β0 :=
∫ 1/2

−1/2
b(t)�M(t)b(t)dt, b1 :=

∫ 1/2

−1/2
M(t)b(t)dt, b2 :=

∫ 1/2

−1/2
tM(t)b(t)dt,

and we let B1,B2 ∈R
2×2
sym be the 2 × 2 symmetric matrices corresponding to b1 and b2.

Let Q2 be given as in (4). Elementary calculations show that

Q2[E,F ] =
∫ 1/2

−1/2
Q2(t,E + tF + B̌(t))dt

= e�M0e + f �M2f + β0 + 2e�M1f + 2e�b1 + 2f �b2

= (
e +M−1

0 (M1f + b1)
)�

M0

(
e +M−1

0 (M1f + b1)
)

+ (
f + (M∗)−1(b2 −M1M

−1
0 b1)

)�
M∗(f + (M∗)−1(b2 −M1M

−1
0 b1)

)

− (
M1M

−1
0 b1

)�
(M∗)−1

(
M1M

−1
0 b1

)− b�
1 M−1

0 b1 + β0

= γ + (
e +M−1

0 (M1f + b1)
)�

M0

(
e +M−1

0 (M1f + b1)
)

+ (
f + (M∗)−1(b2 −M1M

−1
0 b1)

)�
M∗(f + (M∗)−1(b2 −M1M

−1
0 b1)

)
,

where

γ := −(M1M
−1
0 b1

)�
(M∗)−1

(
M1M

−1
0 b1

)− b�
1 M−1

0 b1 + β0. (10)
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We define the linear mappings Li ,L∗ :R2×2
sym →R

2×2
sym , i = 1,2,3, by

LiA =A′ ⇐⇒ Mi a = a′, respectively, L∗A= A′ ⇐⇒ M∗ a = a′

and the positive definite quadratic forms Q0
2 and Q∗

2 on R
2×2
sym by

Q0
2(A) = a�M0 a, respectively, Q∗

2(A) = a�M∗a. (11)

In terms of these quantities our computation reads

Q2[E,F ] = γ +Q0
2(E −L−1

0 L1F −E0)+Q∗
2(F + F0) (12)

with

F0 = L−1
∗ (B2 −L1L−1

0 B1), E0 = L−1
0 B1. (13)

Minimizing out E yields

Q
	

2(F )= min
E∈R2×2

sym

Q2[E,F ] = γ +Q∗
2(F + F0). (14)

Examples 1. For a homogeneous material Q2(t,A) = Q2(A) with linear internal misfit
B(t) = tI one has

IlKi(v) = 1

24

∫
ω

Q2(∇2v − I ),

Iθ
vK(u, v) = θ

2

∫
ω

Q2(∇su+ 1

2
∇v ⊗∇v)+ 1

24

∫
ω

Q2(∇2v − I ), (15)

IlvK(u, v) = 1

2

∫
ω

Q2(∇su)+ 1

24

∫
ω

Q2(∇2v − I )

for v ∈ W
2,2
sh (ω), respectively, (u, v) ∈ W 1,2(ω;R2) × W 2,2(ω;R). These functionals,

where the elastic coefficients do not depend on the out-of-plane component, can model
for instance a single-layer material under thermal stress. In Sect. 5, we will study the
energy (15) as a function of θ .

2. As a second example we consider a BGaAs/InGaAs bilayer consisting of an InGaAs
layer on top of which a BGaAs film is grown epitaxially and where the thickness of the
upper layer is approximately 0.8 times the thickness of the lower layer, [32, 39]. The
linearised energy within the two individual layers is given by

Q3(t,F ) = C11

(
F 2

11 + F 2
22 + F 2

33

)+C44

(
F 2

12 + F 2
23 + F 2

31

)
+2C12 (F11F22 + F22F33 + F33F11)

with suitable positive constants C11, C44, C12 (only depending on t ), see below. As a
consequence we obtain

Q2(t,F ) =
(

C11 − C2
12

C11

)(
F 2

11 + F 2
22

)+C44F
2
12 + 2

(
C12 − C2

12

C11

)
F11F22.
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For InGaAs (i.e., − 1
2 < t < 1

18 ), respectively, BGaAs (i.e., 1
18 < t < 1

2 ) the elastic moduli
are (in GPa)

CInGaAs
11 = 105.8, CInGaAs

12 = 50.4, CInGaAs
44 = 52.2,

CBGaAs
11 = 123.0, CBGaAs

12 = 54.0, CBGaAs
44 = 59.6.

It follows that

M(t) ≈
⎛
⎝81.8 26.4 0

26.4 81.8 0
0 0 52.2

⎞
⎠ , respectively,

⎛
⎝99.3 30.3 0

30.3 99.3 0
0 0 59.6

⎞
⎠ ,

for t ∈ (−1/2,1/18), respectively, t ∈ (1/18,1/2). Straightforward explicit calculations
yield

M0 ≈
⎛
⎝89.6 28.1 0

28.1 89.6 0
0 0 55.5

⎞
⎠ , M∗ ≈

⎛
⎝7.48 2.35 0

2.35 7.48 0
0 0 4.64

⎞
⎠ ,

hence

Q0
2(F ) ≈ 89.6

(
F 2

11 + F 2
22

)+ 55.5F 2
12 + 56.2F11F22,

Q∗
2(F ) ≈ 7.48

(
F 2

11 + F 2
22

)+ 4.64F 2
12 + 4.70F11F22.

The lattice constants are 0.58031 nm for InGaAs and 0.56313 nm for BGaAs, which
corresponds to a misfit of approximately 3%. The misfit tensor Bh = B is isotropic, so—
possibly after rescaling the in-plane coordinates—it can be chosen in such a way that the
first moment B1 vanishes. With these properties we get

hα−1B(t) ≈
{
−0.0149 for − 1/2 < t < 1/18,

0.0156 for − 1/2 < t < 1/18.

Choosing for definiteness B(t) ≈−1.49I for −1/2 < t < 1/18 and B(t) ≈ 1.56 · I for
1/18 < t < 1/2 of order 1, we see that our theory is relevant for a layer of aspect ratio h

and a scaling parameter α whenever hα−1 is of the order 1%.
We also compute B2 = 44.9I and, using (10), (13) and (14), γ = β0 = 547, F0 =

4.59I , E0 = 0 and thus arrive at the explicit formulae

Q2[E,F ] ≈ 547 + 89.6
(
E2

11 +E2
22

)+ 55.5E2
12 + 56.2E11E22

+ 7.48
(
(F11 + 4.59)2 + (F22 + 4.59)2

)+ 4.64F 2
12

+ 4.70(F11 + 4.59)(F22 + 4.59),

Q
	

2(F )≈ 547 + 7.48
(
(F11 + 4.59)2 + (F22 + 4.59)2

)

+ 4.64F 2
12 + 4.70(F11 + 4.59)(F22 + 4.59).

3 Optimal Configurations in the Linearised and the Asymptotic Critical
Regimes

In this section we develop a characterisation of minimisers for the lower range α ∈ (2,3)

and for the upper range α > 3 of scalings. Recall from the discussion in Sect. 1 that we
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are primarily interested in the shape of the out-of-plane component v. The results indicate
that the characteristic shapes in the limit h→ 0 are (infinitesimal) cylinders and paraboloids
respectively. Invoking the �-convergence results with respect to the interpolation parameter
θ from [11, Sect. 6] this will also shed light on the optimal shapes in the asymptotic regimes
θ → 0 and θ →∞ for the von Kármán scaling α = 3. We collect our results in the follow-
ing three theorems, where Theorem 1 is indeed rather an elementary observation based on
our preparations form the previous section and Theorem 3 is a direct consequence of [11,
Sect. 6]. We allow for a general bounded Lipschitz domain ω in these theorems.

Theorem 1 The minimisers of IlvK, Eq. (8), are of the form

u(x)= (E0 −L−1
0 L1F0)x and v(x)= 1

2
x�F0x, (16)

with E0,F0 ∈ R
2×2
sym the constants from (13). u is unique up to an infinitesimal rigid motion

and v up to the addition of an affine transformation.

Theorem 2 Up to the addition of an affine transformation, the minimisers of IlKi, Eq. (6),
are of the form

v(x) = 1

2
x�Fx, F ∈N := argmin

{
Q∗

2(F − F0) : F ∈R
2×2
sym , detF = 0

}
(17)

where Q∗
2, F0 are given in (11) and (13), respectively.

Remark 2 Describing symmetric 2 × 2 matrices A by vectors a ∈R
3 as in Sect. 2.2, the set

N is the set of touching points of the two quadrics {a ∈ R
3 : a1a2 − a2

3 = 0} (a cone) and
{a ∈ R

3 : a�M∗a = cm} (an ellipsoid), where cm = Q∗
2(F − F0) with F ∈ N . If #N ≥ 3,

intersecting with an affine plane P containing three distinct points of N shows that N ∩ P

is an ellipse and then even N ⊂ P . This shows that either #N = 1 and there is a unique
minimiser, or #N = 2 and there are precisely two minimisers, or N is an affine ellipse
and to each ‘winding direction’ Re, e ∈ S1, there is a unique curvature λ = λ(e) such that
∇2v ≡ λe ⊗ e.

Theorem 3 Suppose that (uθ , vθ ) are minimisers of Iθ
vK, Eq. (7).

a) As θ → 0, up to infinitesimal rigid motions in the in-plane component and up to the
addition of affine transformations in the out-of-plane component, (θ1/2uθ , vθ ) ⇀ (u,v)

in W 1,2(ω,R2)×W 2,2(ω;R) with (u, v) as in (16).
b) As θ →∞, up to the addition of affine transformations in the out-of-plane component

and up to passing to a subsequence, vθ ⇀ v in W 2,2(ω;R) with v as in (17).

Proof of Theorem 1 By (8) and (12)

IlvK(u, v)= 1

2

∫
ω

Q2[∇su,−∇2v]dx

= 1

2

∫
ω

∫ 1/2

−1/2
Q0

2(∇su+L−1
0 L1∇2v −E0)+Q∗

2(−∇2v − F0)dx + γ

2
|ω|,

with u ∈ W 1,2(ω;R2) and v ∈ W 2,2(ω;R), is minimal (with value γ |ω|/2) if and only if
∇2v =−F0 and ∇su= L−1

0 L1F0 +E0 a.e. �
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Proof of Theorem 3 a) is immediate from [11, Theorems 7, 10, 11]. b) directly follows from
[11, Theorems 7, 8, 9] if ω is convex. For general ω first note that the compactness re-
sult in [11, Theorem 7] does not use convexity, so that vθ ⇀ v in W 2,2(ω;R) for some
v ∈ W

2,2
sh . Now fix F = (fij )1≤i,j≤2 ∈N and v̄(x) = 1

2x�Fx. Since detF = 0, the function
u′(x) = − 1

6 f11x
3
1 (f11, f12) − 1

2f12x
2
1x2(f11, f12) − 1

2f12x1x
2
2 (f12, f22) − 1

6f22x
3
2 (f12, f22)

satisfies ∇su
′ + 1

2∇v̄ ⊗ ∇v̄ = 0. Also choose u′′(x) = Ex with E = E0 − L−1
0 L1F , cf.

(12) and (13). Then for ū = u′ + θ−1/2u′′ we have by (14)

Iθ
vK(ū, v̄) = 1

2

∫
ω

Q2[∇su
′′,−∇2v̄] = 1

2

∫
ω

Q
	

2(−∇2v̄)= IlKi(v̄).

With the help of the Vitali covering theorem we can exhaust ω up to a set of negligible
measure with disjoint convex subdomains ω1,ω2, . . . Denoting the accordingly restricted
functionals by Iθ

vK( · ;ωn), IlKi( · ;ωn) we have

linf
θ→∞Iθ

vK(ū, v̄) ≥ linf
θ→∞Iθ

vK(uθ , vθ ) ≥
∑

n

linf
θ→∞Iθ

vK(uθ , vθ ;ωn)

≥
∑

n

IlKi(v;ωn) ≥
∑

n

IlKi(v̄;ωn)

= IlKi(v̄) = linf
θ→∞Iθ

vK(ū, v̄),

where we have made use of the lower bound in the �-convergence of Iθ
vK(·;ωn) to

IlKi(·;ωn), see [11, Theorem 8], in the third step and of Theorem 2 in the fourth step. So we
must have IlKi(v;ωn) = IlKi(v̄;ωn) for all n and hence ∇2v ∈N a.e. on ω and so the claim
follows from Theorem 2. �

As for Theorem 2, it is straightforward to see that v as defined in the theorem is a min-
imiser of IlKi. However, the proof that every minimiser of IlKi is necessarily of this form
needs some work. The difficulty lies in excluding the possibility of constructing a minimiser
by piecing together functions whose Hessian belongs to the set N , all with minimal energy
but lacking a nice global structure. Yet it is possible to obtain a global representation of the
Hessian which shows that it must be constant over ω so that minimisers are (up to an affine
transformation) indeed cylindrical. In order to do this we require (cf. [33]):

Definition 1 Let ω′ ⊂ R
2 a convex bounded domain and y ∈ W 1,2(ω′,R3) be an isome-

try. A connected maximal subdomain of ω′ where ∇y is constant and y is affine whose
boundary contains more than two segments inside ω′ is called a body. A leading curve is
a curve orthogonal to the preimages of ∇y on the open regions where ∇y is not constant,
parametrised by arc-length. We define an arm to be a maximal subdomain ω(γ ) which is
covered (parametrised) by some leading curve γ as follows:

ω(γ ) ⊂ {φγ (t, s) := γ (t)+ sν(t) : s ∈R, t ∈ [0, l]},

where ν(t) = γ ′(t)⊥. We also speak of a covered domain.

The existence of covered domains for isometric immersions y ∈ W 1,2 is shown in [33,
Corollary 1.2]. ω′ decomposes into bodies and arms, see [33, Theorem II] and Fig. 1.
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Fig. 1 The partition of ω′ into
bodies and arms. ∇y is constant
in the bodies (shaded) and along
each of the straight lines making
up the arms (white)

Proposition 1 Let v ∈W
2,2
sh (ω) and x0 ∈ ω. There exists a neighbourhood U of x0 such that,

if ∇2v �= 0 a.e. in U , then for a suitable ε > 0 there exist maps γ ∈ W 2,2((−ε, ε);R2) and
λ ∈ L2((−ε, ε)) such that U ⊂ {γ (t)+ sν(t) : s ∈R, t ∈ (−ε, ε)} and

∇2v(γ (t)+ sν(t))= λ(t)

1 − sγ ′′(t)
γ ′(t)⊗ γ ′(t) (18)

if γ (t)+ sν(t) ∈U .

Proof Without loss of generality we may assume that ω is convex. Using [16, Theorem 10]
take vk ∈ W 2,2 ∩ W 1,∞, Sk ⊂ ω such that x0 ∈ intSk , vk = v on Sk and ‖vk‖W1,∞ ≤ C. By
scaling vk with η > 0 we can extend ηvk to an isometry y ([16, Theorem 7]) with ηvk = y3.
Then, because y is an isometry:

−n3 II(y) =∇2y3 = η∇2v on Sk,

where n = y,1 ∧ y,2 is the normal and II(y) = (∇y)�∇n the second fundamental form of the
surface y(ω). Since ∇2y �= 0 a.e. near x0, there is a neighbourhood U of x0 covered by some
leading curve γ , that is: U ⊂ {γ (t) + sν(t) : s ∈ R, t ∈ (−ε, ε)} and, by [39, p. 111], on U

we have

II(y)(γ (t)+ sν(t))= λ̃(t)

1 − sγ ′′(t)
γ ′(t)⊗ γ ′(t),

with λ̃ ∈ L2. Now, [20, Proposition 1, Eq. (12)] shows that ∇y(γ (t)+ sν(t)) is independent
of s, hence n3 = (y,1 ∧y,2)3 is also independent of s and we can subsume it into the function
λ̃. Setting λ(t)=−n3(t)λ̃(t)/η we obtain the representation (18). �

Finally, we come to:

Proof of Theorem 2 To recapitulate, according to (6) and (14) the linearised Kirchhoff en-
ergy is given by

IlKi(v) = 1

2

∫
ω

Q∗
2(∇2v(x)− F0)dx + γ

2
|ω| (19)

for v ∈W
2,2
sh (and ∞ otherwise).

We observe first that the set N = argmin{Q∗
2(F −F0) : F ∈R

2×2
sym ,detF = 0} is not empty

because F 	→ Q∗
2(F − F0) is non-negative and strictly convex, but it also need not consist

of just one point. Note next that v is a minimiser of (19) iff ∇2v(x) ∈N for almost every
x ∈ ω: Every minimiser has finite energy and thus det∇2v = 0 a.e. So x 	→ 1

2x�Fx for any
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F ∈N is a minimiser. But then a general v ∈ W
2,2
sh (ω) is a minimiser if and only if ∇2v ∈N

a.e.
Next we show that any two elements F , G of N are linearly independent. Indeed, by

strict convexity we have for all λ ∈ (0,1):

Q∗
2(λF + (1 − λ)G− F0) < λQ∗

2(F − F0)+ (1 − λ)Q∗
2(G− F0).

Hence λF + (1 − λ)G /∈ N or else F , G would not be minimisers. Because Q∗
2 attains a

lower value here we must have det(λF + (1− λ)G) �= 0. But then it cannot be that G= ρF

for any scalar ρ ∈R or else it would hold that det(λF +(1−λ)G) = det(λF +(1−λ)ρF) =
C detF = 0, a contradiction. Consequently, we have in particular 0 /∈N unless N = {0}. But
in that case ∇2v ≡ 0 and the proof would be concluded.

Let now v ∈ W
2,2
sh be a minimiser for IlKi. Note first that ∇v cannot be constant over

open sets: indeed we just saw that w.l.o.g. 0 /∈N and consequently the condition ∇2v = 0 is
excluded for a minimiser on any set of positive measure. Consider then some point x0 ∈ ω

with a neighbourhood U where ∇v is not constant and use the representation (18). We have
that, pointwise a.e. and over U :

0 �= ∇2v(γ (t)+ sν(t))= λ(t)

1 − sκ(t)
γ ′(t)⊗ γ ′(t).

If κ(t) �= 0, by varying s we obtain distinct, linearly dependent matrices ∇2v(t, s). Because
∇2v ∈N a.e., this shows that κ(t) = 0 for a.e. t . As a consequence, γ ′ must be constant. But
then λ is also constant or again we would have points at which ∇2v is linearly dependent.
Since this holds locally around every x = γ (t)+ sγ ′(t), we deduce that ∇2v is constant on
U and because we can cover ω in this manner, there exists F ∈N such that ∇2v ≡ F a.e.
over ω. �

4 Structure of Minimisers for Iθ
vK for Small θ

The second main contribution of this work is a first study of the properties of minimisers
in the interpolating regime, “close” to the linearised von Kármán model. For the sake of
simplicity we restrict to the prototypical model from (15):

Iθ
vK(u, v) = θ

2

∫
ω

Q2(∇su+ 1

2
∇v ⊗∇v)dx + 1

24

∫
ω

Q2(∇2v − I )dx,

where we allow for θ ∈ [0,∞). Here the θ -dependent term θ1/2(∇su + 1
2∇v ⊗ ∇v) de-

couples from the second contribution ∇2v and moreover the average of the misfit B1 =∫ 1/2
−1/2 Q2(t, B̌(t))dt vanishes, which considerably simplifies the following computations. In

fact the extension to the general case is not obvious. The results in Sect. 3 show that the tran-
sition from spherical to cylindrical shapes occurs in the interpolated von Kármán regime as
the strength θ of the misfit increases. We will see that for small θ > 0 indeed there exists a
unique stable branch of solutions emanating from a perfect spherical cap at θ = 0.

Natural subsequent steps along this line of work, which we do not take here, are to con-
sider the regime of large values of θ and to investigate the existence of a critical bifurcation
value of θ , as well as to consider the full model derived in (7).2

2In Sect. 5 we conduct numerical experiments supporting the conjecture that such a critical value exists.
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We recall that the existence of minimisers is guaranteed, cf. Remark 1. Without loss
of generality we assume that the barycenter of ω is 0. So with (f )ω := 1

|ω|
∫

ω
f (x)dx for

a function f we have in particular (x)ω = 0. In order to avoid ambiguities (and to apply
Korn’s and Poincaré’s inequalities) we restrict the functions w = (u, v) to lie in the Banach
space

X :=Xu ×Xv,

with Xu, Xv as in

Xu :=
{
u ∈W 1,2(ω;R2) : (∇au)ω = 0 and (u)ω = 0

}
,

Xv :=
{
v ∈ W 2,2(ω;R) : (∇v)ω = 0 and (v)ω = 0

}

and norm ‖(u, v)‖X = (‖u‖2
1,2+‖v‖2

2,2)
1/2. (Here and in the sequel we abbreviate ‖·‖k,p,ω =

‖ · ‖Wk,p(ω) and also drop ω if the domain is clear.) By the arguments in [11, Remark 2]
working with these spaces does not lead to a loss of generality either: For an affine function
g, ∇(v + g) ⊗∇(v + g) −∇v ⊗∇v is a symmetrised gradient ∇sw for a suitable w ∈ Xu

so that Iθ
vK(u, v + g) = Iθ

vK(u+w,v).
For small values of the parameter θ we have the following structural result on the set

of minimisers showing the existence of a smooth branch of unique global minimisers. Let
v0(x)= 1

2 |x|2 − c0 with c0 = 1
2 (|x|2)ω .

Theorem 4 There exists an ε > 0, a unique point u0 ∈ Xu and a uniquely determined C1

map φ : [0, ε)→ X such that φ(0) = (u0, v0) and for each θ ∈ [0, ε):

w ∈ argminIθ
vK ⇐⇒ w = φ(θ).

The proof is a direct consequence of Theorems 5 and 6 that are proved in the following
two subsections. The main difficulty in obtaining a local branch of minimisers for θ � 1
lies in the fact that minimisers at θ = 0 are not unique. Indeed,

(u, v0) ∈ argminI0
vK for u arbitrary, (20)

as can be readily checked. This is addressed in Sect. 4.1. The proof that in fact these minimis-
ers are global is achieved by an application of a Taylor expansion for a carefully perturbed
functional in Sect. 4.2.

4.1 A Branch of Solutions for θ � 1

Notation In this section, the parameter θ will be explicitly included in the arguments of the
functional and differentiation is understood to be with respect to the variables w = (u, v),
unless otherwise stated, i.e.

DIθ
vK(u, v; θ) =Du,vIθ

vK(u, v; θ).

We are interested in the existence and uniqueness of solutions w = (u, v) to the equation

DIθ
vK(u, v; θ)= 0

as a function of θ ∈ [0, ε) with Iθ
vK given by (15). We will in fact prove the existence of a

point (u0, v0) ∈ X such that there exists a (locally) unique function φ(θ), starting for θ = 0
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at (u0, v0), such that every φ(θ) ∈ X is a critical point for Iθ
vK. However, lack of uniqueness

of minimisers at θ = 0, (20) will thwart what would be a natural application of the implicit
function theorem. The problem manifests itself as a lack of injectivity of the first derivative
at (u, v) ∈X

DIθ
vK(u, v; θ)[(ϕ,ψ)] = θ

∫
ω

Q2

[
∇su+ 1

2
∇v ⊗∇v,∇sϕ + (∇v ⊗∇ψ)sym

]

+ 1

12

∫
ω

Q2[∇2v − I,∇2ψ], (21)

which for θ = 0 is

DIθ
vK(u, v;0)[(ϕ,ψ)] = 1

12

∫
ω

Q2[∇2v − I,∇2ψ],

and this vanishes at every u ∈ Xu and the unique v(x) = 1
2 |x|2 + a · x + b, a ∈ R

2, b ∈ R,
such that (v)ω = 0 and (∇v)ω = 0, i.e., v = v0. Because of this the equation

DIθ
vK(u, v; θ)= 0 in L(X,R)

cannot be uniquely solvable for (u, v) ∈ X as a function of θ , even locally. Nevertheless,
after some computations one can see that the problem is the presence of a leading factor θ

which we can dispense with, because we may apply the implicit function theorem to the set
of equivalent equations

(
1

θ
∂u)Iθ

vK(u, v; θ)= 0, ∂vIθ
vK(u, v; θ) = 0. (22)

These equations are equivalent to DIθ
vK(u, v; θ) = 0 for any θ > 0 and by an applica-

tion of the implicit function theorem around a specific point (u0, v0;0) we determine the
existence of a solution function φ : � → U × V with [0, ε) ⊂ �, ε > 0, U × V ⊂ X open,
φ(0) = (u0, v0) and

(
1
θ
∂u, ∂v

)
Iθ

vK(φ(θ); θ) = 0. Then we have DIθ
vK(φ(θ); θ) = 0 for θ > 0

because of the equivalence mentioned and DIθ
vK(φ(0);0) = 0 by the choice of (u0, v0).

Theorem 5 There exists an open set W in X, an ε > 0, a point u0 ∈ Xu such that w0 =
(u0, v0) ∈W and a uniquely determined C1 map φ :�→ W such that φ(0) = w0 and

DIθ
vK(w; θ) = 0 ⇐⇒ w = φ(θ)

for all w ∈ W and θ ∈ [0, ε).

Proof We first define a new set of equations to solve, then show that the second derivative
of Iθ

vK is one to one and then the conclusion is exactly that of the implicit function theorem.
For brevity we write

〈F,G〉 :=
∫

ω

Q2[F,G] and 〈F 〉 := 〈F,F 〉 =
∫

ω

Q2(F ).

These define a scalar product and a norm in L2(ω;R2×2
sym ) since Q2 is by construction bi-

linear and symmetric and it is positive definite on this space. Even though Q2 vanishes on
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antisymmetric matrices, during the proof we keep track of symmetrised arguments to these
functions for the sake of clarity.

Step 1: Equivalent equations.
From the computations leading to (21) we have:

1

θ
∂uIθ

vK(u, v; θ)[ϕ] = 〈∇su+ 1

2
∇v ⊗∇v,∇sϕ〉,

and

∂vIθ
vK(u, v; θ)[ψ] = θ〈∇su+ 1

2
∇v ⊗∇v, (∇v ⊗∇ψ)sym〉

+ 1

12
〈∇2v − I,∇2ψ〉

for all (ϕ,ψ) ∈ X. We observe first that, because 1
θ
∂uIθ

vK is independent of θ the right hand
side makes sense even if θ = 0. Now, on the one hand, for any fixed value of θ ≥ 0 solving
the system {

1
θ
∂uIθ

vK(u, v; θ) = 0, in L(Xu,R),

∂vIθ
vK(u, v; θ) = 0, in L(Xv,R),

implies solving:

f (u, v; θ)[ϕ,ψ] = 0 for every (ϕ,ψ) ∈X, (23)

where f :X ×R→ L(X,R) is given by

f (u, v; θ)[ϕ,ψ] = 〈∇su+ 1

2
∇v ⊗∇v,∇sϕ〉

+ θ〈∇su+ 1

2
∇v ⊗∇v, (∇v ⊗∇ψ)sym〉

+ 1

12
〈∇2v − I,∇2ψ〉.

On the other hand, solving f (u, v; θ) = 0 for θ > 0 is equivalent to solving the original
problem DIθ

vK(u, v; θ) = 0 as we desired.

Step 2: A zero and the derivative of f .
Since we are interested in the behaviour around θ = 0, we evaluate here and obtain

f (u, v;0)[ϕ,ψ] = 〈∇su+ 1

2
∇v ⊗∇v,∇sϕ〉 + 1

12
〈∇2v − I,∇2ψ〉.

We can compute a zero of f (·, ·;0) by first considering the last term, which vanishes for
all ψ ∈ Xv if and only if v = v0. We next observe that the first term encodes the orthogo-
nality of ∇su+ 1

2∇v0 ⊗∇v0 to the space of symmetrised gradients SGu := {∇sϕ : ϕ ∈Xu}
with respect to the scalar product induced by Q2. The u ∈ Xu realizing this is attained by
projecting onto SGu, i.e.,

∇su0 =−π

(
1

2
∇v0 ⊗∇v0

)
,
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where π : L2(ω;R2×2
sym ) → L2(ω;R2×2

sym ) is the orthogonal projection onto SGu given by

π(B) := argmin
A∈SGu

∫
ω

Q2(B −A)= argmin
A∈SGu

〈B −A〉Q2 .

By the Korn-Poincaré inequality this determines u0 ∈ Xu uniquely. We have then a point
w0 = (u0, v0) such that

f (u0, v0;0)= 0 in L(X,R).

Finally, we compute d
dε
|ε=0f (u0 + εϕ2, v0 + εψ2;0)[ϕ1,ψ1] to have the derivative of f :

F(ϕ2,ψ2)[ϕ1,ψ1] :=Du,vf (u0, v0;0)[(ϕ1,ψ1), (ϕ2,ψ2)]
= 〈∇sϕ2,∇sϕ1〉 +

〈
(∇v0 ⊗∇ψ2)sym,∇sϕ1

〉

+ 1

12
〈∇2ψ2,∇2ψ1〉.

Step 3: The map F :X → L(X,R) is an isomorphism.
Note first that the map

〈(u, v), (ũ, ṽ)〉X := 〈∇su,∇s ũ〉 + 〈∇2v,∇2ṽ〉

defines a scalar product in X, with positive-definiteness following from Korn-Poincaré’s and
Poincaré’s inequality. Then we can write F as

F(ϕ2,ψ2)[ϕ1,ψ1] = 〈(ϕ1,ψ1), (ϕ2 + π̃((∇v0 ⊗∇ψ2)sym),
1

12
ψ2)〉X,

where we defined π̃ := ∇−1
s ◦ π , a continuous map from L2(ω;R2×2

sym ) to Xu. The Riesz
representation for F(ϕ2,ψ2) in L(X,R) is then (ϕ2 + π̃((∇v0 ⊗ ∇ψ2)sym), 1

12ψ2) and the
map

(ϕ2,ψ2) 	→ (ϕ2 + π̃((∇v0 ⊗∇ψ2)sym),
1

12
ψ2)

is clearly an isomorphism in X, with continuity for ψ2 	→ π̃((∇v0 ⊗ ∇ψ2)sym) following
from the continuity of π̃ and the Sobolev embedding W 1,2 ↪→ L4. �

4.2 Uniqueness and Globality of Minimisers

In addition to the previous local result, we can prove that the critical points found in the
previous subsection are the unique global minimisers for small non zero values of the pa-
rameter θ . Close to the origin (u0, v0) of the branch of solutions, we would like to perform a
Taylor expansion and use that the second differential at (u0, v0) is “almost” positive definite.

The key idea is to slightly modify the energy by a shift and a rescaling in order to obtain
derivatives as those appearing in the equivalent equations (23) of Theorem 5, thus obtaining
a positive definite second derivative. We set

Ĩθ
vK(ũ, ṽ) := Iθ

vK

(
u0 + ũ

θ
, ṽ

)
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and then (ũθ , ṽθ ) is a minimiser of Ĩθ
vK if and only if (u0 + ũθ /θ, ṽθ ) is a minimiser of Iθ

vK.
In other words, if (uθ , vθ ) is a minimiser of Iθ

vK, then ũθ = θ(uθ −u0) and ṽθ = vθ minimise
Ĩθ

vK.
We name w̃0 the point around which we investigate the modified functional:

w̃0 := (ũ0, ṽ0)= (0, v0). (24)

Theorem 6 There exists θc > 0 and a neighborhood W̃ ⊂ X with w̃0 ∈ W̃ such that for
every θ ∈ (0, θc), every critical point in W̃ of Ĩθ

vK is the unique global minimiser of Ĩθ
vK.

Proof We proceed in three steps. First we prove that there is some θc > 0 such that
D2Ĩθ

vK(w̃) is positive definite for all θ ∈ (0, θc) if ‖w̃ − w̃0‖ < η for some suitable η > 0
and w̃0 = (0, v0) as defined in (24). Then we use this to determine a neighbourhood of w̃0

where (local) minimisers of Ĩθ
vK will be global by first considering points close to one such

minimiser and finally those far away. We will need the first two derivatives of Ĩθ
vK.

For the first differential we apply the chain rule to obtain DuĨθ
vK(ũ, ṽ) =

1
θ
DuIθ

vK

(
u0 + ũ

θ
, ṽ
)

and substitute:

DĨθ
vK(ũ, ṽ)[ϕ,ψ] = 〈∇su0 + 1

θ
∇s ũ+ 1

2
∇ṽ ⊗∇ṽ,∇sϕ〉

+ θ〈∇su0 + 1

θ
∇s ũ+ 1

2
∇ṽ ⊗∇ṽ, (∇ṽ ⊗∇ψ)sym〉

+ 1

12
〈∇2ṽ − I,∇2ψ〉.

For the second differential we can compute another directional derivative:

d

dε
|ε=0DĨθ

vK(ũ+ εϕ2, ṽ + εψ2)[ϕ1,ψ1]

= 〈1

θ
∇sϕ2 + (∇ṽ ⊗∇ψ2)sym,∇sϕ1〉

+ 〈∇sϕ2 + θ(∇ṽ ⊗∇ψ2)sym, (∇ṽ ⊗∇ψ1)sym〉

+ θ〈∇su0 + 1

θ
∇s ũ+ 1

2
∇ṽ ⊗∇ṽ, (∇ψ2 ⊗∇ψ1)sym〉

+ 1

12
〈∇2ψ2,∇2ψ1〉. (25)

Step 1: Local positive definiteness.
We show that there exist η > 0 and θc > 0 s.t. D2Ĩθ

vK(w̃) is positive definite for all θ < θc

and all ‖w̃− w̃0‖X < η. More precisely, we even show that there exists some c̄ > 0 such that

D2Ĩθ
vK(w̃)[(ϕ,ψ), (ϕ,ψ)] ≥ c̄‖(ϕ,ψ)‖2

X (26)

for all θ < θc , ‖w̃ − w̃0‖X ≤ η and (ϕ,ψ) ∈X.
Let then η > 0 be fixed and to be determined later and let w̃ = (ũ, ṽ) ∈ X with ‖w̃ −

w̃0‖X < η. We start by bringing terms together in (25):

D2Ĩθ
vK(w̃)[(ϕ,ψ), (ϕ,ψ)]

= 1

θ

〈∇sϕ + θ(∇ṽ ⊗∇ψ)sym

〉
(a)
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+ θ〈∇su0 + 1

θ
∇s ũ+ 1

2
∇ṽ ⊗∇ṽ, (∇ψ ⊗∇ψ)sym〉 (b)

+ 1

12
〈∇2ψ〉. (c)

Given f,g ∈ W 1,2(ω;R2) we have, by the bounds (2) for Q2 and Hölder (with the Sobolev
embedding W 1,2(ω;R2) ↪→ L4(ω;R2)):

〈(f ⊗ g)sym〉 �
∫

ω

|f ⊗ g|2 =
∫

ω

|f |2|g|2 ≤ ‖f ‖2
0,4‖g‖2

0,4 � ‖f ‖2
1,2‖g‖2

1,2.

Using this, the first and last term above can be estimated using Korn-Poincaré and Poincaré’s
inequality:

(a)≥ 1

2θ
〈∇sϕ〉 − θ〈(∇ṽ ⊗∇ψ)sym〉

≥ c

2θ
‖∇sϕ‖2

0,2 −Cθ‖∇ṽ ⊗∇ψ‖2
0,2

≥ c1

θ
‖ϕ‖2

1,2 − C̃1θ‖ṽ‖2
2,2‖ψ‖2

2,2

≥ c1θ
−1‖ϕ‖2

1,2 −C1θ‖ψ‖2
2,2

for constants c1,C1, C̃1 > 0, where in the last step we used the assumption ‖ṽ − v0‖2,2 < η

to bound ‖ṽ‖2
2,2 by some constant independent of η ≤ 1. For the second term, use Cauchy-

Schwarz for Q2, and the same ideas as above:

(b) � −θ‖∇su0 + 1

θ
∇s ũ+ 1

2
∇ṽ ⊗∇ṽ‖0,2‖(∇ψ ⊗∇ψ)sym‖0,2

� − [
θ
(‖∇su0‖0,2 + ‖∇ṽ ⊗∇ṽ‖0,2

)+ ‖∇s ũ‖0,2

]‖(∇ψ ⊗∇ψ)sym‖0,2

� −[θ(‖u0‖1,2 + ‖∇ṽ‖2
0,4)+ ‖ũ‖1,2]‖∇ψ‖2

0,4

� −[θ(‖u0‖1,2 + ‖ṽ‖2
2,2)+ η]‖ψ‖2

2,2

� −[θ + η]‖ψ‖2
2,2.

Again, we used that by assumption ‖ũ‖1,2 < η and ‖ṽ − v0‖2,2 < η.
Finally we estimate the third term in D2Ĩθ

vK with analogous arguments and obtain (c) ≥
c2‖ψ‖2

2,2, for a c2 > 0. Bringing the previous computations together, with a C2 > 0 we have:

D2Ĩθ
vK(w̃) ≥ c1θ

−1‖ϕ‖2
1,2 + (c2 −C1θ −C2(θ + η))‖ψ‖2

2,2,

from which (26) follows if θc and η are chosen sufficiently small.
From now on, we let w̃θ = (ũθ , ṽθ ) be a critical point of Ĩθ

vK with

‖w̃θ − w̃0‖X≤η

3
, (27)

and we prove that it is in fact the unique global minimiser.
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Step 2: Estimates close to w̃θ .
Consider first some w̃ ∈X which is close to w̃θ :

‖w̃ − w̃θ‖X ≤ 2η/3. (28)

With a Taylor expansion and (26) we see:

Ĩθ
vK(w̃) = Ĩθ

vK(w̃θ )+DĨθ
vK(w̃θ )[w̃ − w̃θ ]︸ ︷︷ ︸

=0

+1

2
D2Ĩθ

vK(z)[w̃ − w̃θ , w̃ − w̃θ ]

≥ Ĩθ
vK(w̃θ )+ c̄

2
‖w̃ − w̃θ‖2

X,

where z ∈ {αw̃ + (1 − α)w̃θ : α ∈ [0,1]} ⊂ Bη(w̃0) by (27) and (28). So

Ĩθ
vK(w̃) > Ĩθ

vK(w̃θ ) unless w̃ = w̃θ .

Step 3: Estimates far away from w̃θ .
Consider now any w̃ ∈ X with

‖w̃ − w̃θ‖X > 2η/3, (29)

which by (27) implies that ‖w̃ − w̃0‖X > η/3. We consider two cases:
Case 1: ‖ṽ − v0‖2,2 ≥ η/6: We discard the first term in the energy, recall that v0(x) =
|x|2/2 − c0 and use the lower bound for Q2 in (2) and Poincaré’s inequality:

Ĩθ
vK(w̃)≥ 1

24
〈∇2ṽ − I 〉 ≥ c

24
‖∇2(ṽ − v0)‖2

0,2 ≥ c1η
2

for a c1 > 0. To compare this with the energy at w̃0 we add and subtract Ĩθ
vK(w̃0) = θ

2 〈∇su0+
1
2∇v0 ⊗∇v0〉:

Ĩθ
vK(w̃) ≥ Ĩθ

vK(w̃0)+ c1η
2 − θ

2
〈∇su0 + 1

2
∇v0 ⊗∇v0〉

> Ĩθ
vK(w̃0), for θ small enough,

≥ Ĩθ
vK(w̃θ ),

where the last line is due to the fact that w̃θ minimises Ĩθ
vK over the ball B 2

3 η(w̃θ ).

Case 2: ‖ṽ − v0‖2,2 < η/6: In this case we also have ‖ũ‖1,2 ≥ η/6 by (27) and (29). We can
estimate the energy for w̃ as follows:

Ĩθ
vK(w̃)= θ

2
〈∇su0 + 1

θ
∇s ũ+ 1

2
∇ṽ ⊗∇ṽ〉 + 1

24
〈∇2ṽ − I 〉

≥ 1

2θ
〈∇s ũ〉 + θ

2
〈∇su0 + 1

2
∇ṽ ⊗∇ṽ〉

+ 〈∇s ũ,∇su0 + 1

2
∇ṽ ⊗∇ṽ〉

≥
( 1

2θ
− ε

)
〈∇s ũ〉 +

(θ

2
− 1

4ε

)
〈∇su0 + 1

2
∇ṽ ⊗∇ṽ〉



Energy Minimising Configurations of Pre-strained Multilayers

= 1

4θ
〈∇s ũ〉 − θ

2
〈∇su0 + 1

2
∇ṽ ⊗∇ṽ〉,

where we used the Cauchy-Schwarz inequality with ε := 1
4θ

. Both terms may be estimated
once again by a combination of the bounds (2) for Q2, Sobolev’s embedding W 1,2(ω) ↪→
L4(ω) and Poincaré’s inequality:

1

4θ
〈∇s ũ〉� 1

θ
‖ũ‖2

1,2,

and

1

2
〈∇su0 + 1

2
∇ṽ ⊗∇ṽ〉 ≤ 〈∇su0〉 + 1

2
〈∇ṽ ⊗∇ṽ〉

� ‖∇su0‖2
0,2 + ‖∇ṽ‖2

0,4

� 1 + ‖ṽ‖2
2,2 � 1

since ‖ṽ − v0‖2
2,2 < η/6. Now plug this back into the previous estimate and insert

Ĩθ
vK(w̃0) = θ

2
〈∇su0 + 1

2
∇v0 ⊗∇v0〉 =: C̃θ

to obtain

Ĩθ
vK(w̃) ≥ c1

θ
‖ũ‖2

1,2 −C1θ
(
C +C

η2

9

)

≥ c1η
2

36θ
‖ũ‖2

1,2 − (C1 + C̃)θ + Ĩθ
vK(w̃0)

> Ĩθ
vK(w̃0), for θ small enough,

≥ Ĩθ
vK(w̃θ ).

As above, the last line holds because w̃θ minimises Ĩθ
vK in a 2

3η-neighbourhood of itself. �

Proof of Theorem 4 It suffices to observe that, for ε > 0 sufficiently small, the set W in
Theorem 5 can be chosen so small that (θ(u − u0), v) ∈ W̃ for all (u, v) ∈ W , where W̃ is
the set obtained in Theorem 6, and to recall that (uθ , vθ ) is a minimiser of Iθ

vK if and only if
(θ(uθ − u0), vθ ) is a minimiser of Ĩθ

vK. �

5 Discretisation of the Interpolating Theory

Our goal in this section is to study the qualitative behaviour of minimisers in the interpo-
lating regime α = 3. To this end, we develop a simple numerical method to approximate
minimisers and prove �-convergence to the continuous problem. Numerical computations
are then conducted for the prototypical example from (15). We experimentally evaluate the
conjectured existence of critical parameter values θ > 0 for which the symmetry of minimis-
ers is “strongly” broken. We will not provide a full theoretical analysis, but instead adduce
some empirical evidence to support the claim.
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As can only be expected from a topic originating in structural mechanics, numerical
methods for plate models are a vast field with a long history and as such a comprehensive
review falls well beyond the scope of this contribution. However, it can be said that a signif-
icant portion of finite element approaches focus on the Euler-Lagrange equations. For von
Kármán-like theories like our interpolating regime, these are transformed into an equivalent
form in terms of the Airy stress function [21, §2.6.2]. The resulting system of equations is of
fourth order and can be solved with conforming C1 elements like Argyris or specifically tai-
lored ones. To avoid the higher number of degrees of freedom, non-conforming methods can
be used instead,3 but a poor choice of the discretisation can suffer from locking, as briefly
described in Remark 4. Some successful classical methods employ C0 Discrete Kirchhoff
Triangles (DKT), but it is also possible to employ standard Lagrange elements with penalty
methods [9], as we will do.

A recent line of work, upon which we heavily build in this section, is that of [4, 6], where
the author develops discrete gradient flows for the direct computation of (local) minimisers
of non-linear Kirchhoff and von Kármán models. �-convergence and compactness results
are also proved showing the convergence of the discrete energies to the continuous ones, as
well as their respective minimisers.4 Crucially, these papers use DKTs for the discretisation
of the out-of-plane displacements, allowing for a representation of derivatives at nodes in
the mesh which is decoupled from function values. This enables, e.g., the imposition of an
isometry constraint for the non-linear Kirchhoff model, but also the computation of a dis-
crete gradient ∇ε projecting the true gradient ∇vε of a discrete function vε into a standard
piecewise P2 space. The operator ∇ε has good interpolation properties circumventing the
lack of C1 smoothness of DKTs which would otherwise make them unsuitable to approx-
imate solutions in H 2. We refer to the book [5] for a systematic and mostly self-contained
introduction to these methods.

5.1 Discretisation

We wish to investigate minimal energy configurations of the following functional:

Iθ
vK(u, v) = 1

2

∫
ω

Q2

[
θ1/2(∇su+ 1

2
∇v ⊗∇v),−∇2v

]
dx,

where (u, v) ∈ W 1,2(ω;R2) × W 2,2(ω;R2), cf. (7). We recall the representation of Q2 de-
rived in (12), which in particular shows that Q2 is a strictly convex polynomial of degree 2
on R

2×2
sym ×R

2×2
sym . It is extended to a convex quadratic function on R

2×2 ×R
2×2 by our setting

Q2[E,F ] =Q2[Esym,Fsym]

for E,F ∈R
2×2. We assume that ω ⊂R

2 is a bounded simply connected domain with Lip-
schitz boundary and barycenter 0. We implement (projected) gradient descent in a non-
conforming method using C0 linear Lagrange elements. The first step is to transform the
problem into one of constrained minimisation reducing the order of the elements required.

3See [26, 27] for particular instances of a conforming and a non-conforming method respectively, as well as
reviews of recent literature.
4For a concise introduction to �-convergence for Galerkin discretisations and quadrature approximations of
energy functionals, see [31].
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Problem 1 Find minimisers of

J θ (u, z) = 1

2

∫
ω

Q2

[
θ1/2(∇su+ 1

2
z⊗ z),−∇z

]
dx, (30)

with u, z ∈W 1,2(ω;R2) and

z ∈Z := {ζ ∈W 1,2(ω;R2) : curl ζ = 0}.
If z /∈ Z, then we set J θ (u, z) =+∞.

Note that our assumptions on ω guarantee that Z = {∇v : v ∈ W 2,2(ω)}. We can now
use H 1-conforming elements but, for simplicity of implementation, instead of adding the
constraint into the discrete spaces to obtain a truly conforming discretisation, we add a
penalty term με‖ curl zε‖2 to ensure that the solutions zε are close to gradients.

Assume from now on that ω is a polygonal domain. For fixed ε > 0, introduce a quasi-
uniform triangulation Tε of ω with triangles T of uniformly bounded diameter c−1ε ≤ εT ≤
cε for some c > 0 and all ε > 0 and T ∈ Tε .5 Such a mesh is in particular said to be, in virtue
of the uniform upper bound, shape-regular. We denote by Nε the set of all nodes of the
triangulation. Define Vε to be the standard piecewise affine, globally continuous Lagrange
P1 finite element space S1(Tε) in two dimensions:

Vε :=
{
vε ∈ C(ω;R2) : vε|T ∈ P1(T )2 for all T ∈ Tε

}
.

Quadrature rules will be chosen to be exact for this polynomial degree and the first integrand
in the energy interpolated for this to apply by means of the interpolated quadratic function

Q
ε

2 := Îε ◦Q2.

This is defined (with a slight abuse of notation) component-wise using the element-wise
nodal interpolant Îε , defined for functions v ∈ L∞(ω) such that v|T ∈ C(T ) for all T ∈ Tε

as

Îε(v) :=
∑
T ∈Tε

∑
z∈Nε∩T

v|T (z)ϕz|T , (31)

where ϕz|T is the truncation by zero outside T of the global basis function ϕz ∈ S1. Because
this is a linear combination of truncated global basis functions, the range of Îε is the space
Ŝ1(Tε) of discontinuous, piecewise affine Lagrange elements.

In cases where the function to be interpolated is continuous, the element-wise nodal
interpolant coincides with the standard nodal interpolant into the space S1 of globally con-
tinuous, piecewise affine functions, which is defined as

Iε(v) :=
∑
z∈Nε

v(z)ϕz. (32)

Notice that the shape functions ϕz are not truncated. In order to control the error incurred
by the interpolation when working with discontinuous functions in Ŝ1, we will use the fol-
lowing local result. This follows from standard nodal interpolation estimates (see, e.g., [18,

5Note that this does not allow for arbitrary local refinements or grading (a different scaling of simplices along
different directions as ε → 0), but the fact that this is not optimal is not of concern here.
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Theorem 4.28] or [8, (4.4.4)])

|Iε(v)− v|r,p ≤ Cε2−r‖D2v‖0,p,

or can be shown directly, e.g., in [5, Proposition 3.1].

Lemma 1 (Local interpolation estimate) Let T ∈ Tε and v ∈ C1(T ). If Îε is the element-wise
nodal interpolant (31), then

‖v − Îε(v)‖0,p,T ≤ Cε‖Dv‖0,p,T .

The goal is to solve:

Problem 2 Let με > 0. Compute minimisers of the discrete energy

J θ
ε (uε, zε) = 1

2

∫
ω

Q
ε

2

[
θ1/2(∇suε + 1

2
zε ⊗ zε),−∇zε

]
dx

+με

∫
ω

| curl zε|2 dx,

(33)

for (uε, zε) ∈ V 2
ε . (As usual, if (uε, zε) ∈W 1,2(ω;R2)2\V 2

ε , we set J θ
ε (uε, zε)=+∞.)

Remark 3 (Scaling of the constants) The penalty με = μ(ε) needs to explode as ε → 0 in
order for the functionals to �-converge (Theorem 7). However, large penalties negatively af-
fect the condition number of the system, so that an adequate choice for με , dependent on the
mesh size ε, is required [18, p. 416]. We have not explicitly investigated how this require-
ment interacts with the �-convergence of the functionals, but in our proof we require only
that με →∞ not faster than ε−2. In the implementation we use με = ε−1/2. Analogously,
large values of the Lamé constants have a similar effect and therefore hinder convergence,
so one needs to scale them to the order of the problem.

Remark 4 (Common issues with FEM for plates) Discretisations for lower dimensional the-
ories can face complications due to the infamous locking phenomena. In a nutshell, these
mean that as the thickness of the plate tends to zero, discrete solutions “lock” to stiff states
of lower, or even vanishing, bending or shearing than the analytic ones.6 Another instance
of unexpected behaviour is known as the Babuška paradox [2], again a failure to converge as
expected, which can happen in, e.g., the Kirchhoff model when both vertical and tangential
displacements are fixed at the boundaries of a polygonal domain: these so-called “hard sup-
port constraints” are not enforced in the same manner as in the continuous model because
of the approximated domain.

There are two potential sources of locking in our setting: the penalty term με , which is
akin to the shear strain in Timoshenko beams, and θ . We have not obtained any a priori
bounds on the error in this work, but a rigorous treatment of the problem would require
estimates which are uniform in these parameters as the mesh diameter goes to zero. For the
regimes studied and the geometries considered we have found the issue to be of moderate

6We refer to [3] for a first rigorous definition of locking, to [34, Chaps. 5 and 6] for detailed computations
highlighting the issues with linear elements in the context of Timoshenko beams and to the thesis [36] for a
thorough and detailed analysis of locking in shell models.
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practical relevance, but it does manifest itself, e.g., with more complicated domains or higher
values of θ .

Finally, our simulations will not suffer from Babuška’s paradox because we do not pre-
scribe boundary conditions.

5.2 �-convergence of the Discrete Energies

The first step in the proof that J θ
ε

�→ J θ is dispensing with the interpolation operators for
numerical integration: due to the good properties of Îε , we can assume that we work with
the true integrals

∫
Q2 instead of

∫
Q

ε

2:

Lemma 2 (Numerical integration) Let uε, zε ∈ W 1,2(ω;R2) be uniformly bounded in W 1,2

and let Qε
2 = Îε ◦Q2 as above. Let Aε :=

(
θ1/2(∇suε + 1

2 zε ⊗ zε),−∇zε

)
. Then, as ε → 0:

‖Qε

2[Aε] −Q2[Aε]‖0,1 → 0.

Proof By the local interpolation estimate Lemma 1:
∫

ω

|Qε

2[Aε] −Q2[Aε]|dx

� ε
∑
T ∈Tε

∫
T

|DQ2[Aε]|dx

� ε
∑
T ∈Tε

∫
T

(1 + |Aε|)|DAε|dx

� ε

(∑
T ∈Tε

∫
T

(1 + |Aε|)2 dx

)1/2 (∑
T∈Tε

∫
T

|DAε|2 dx

)1/2

.

Now, the first term is simply ‖1 + |Aε|‖0,2,ω ≤ |ω|1/2 + ‖Aε‖0,2,ω which is uniformly
bounded since ‖zε ⊗ zε‖0,2 = ‖zε‖2

0,4 � ‖zε‖2
1,2, and for the second we use that both ∇suε

and ∇zε are piecewise constant so that for i = 1,2,

|∂iAε|2 = θ |zε ⊗ ∂izε + ∂izε ⊗ zε|2 � |zε|2|∂izε|2,
and

∑
T∈Tε

∫
T

|∂iAε|2 dx �
∑
T ∈Tε

∫
T

|zε|2|∂izε|2 dx ≤
∑
T ∈Tε

‖zε‖2
0,∞,T ‖∂izε‖2

0,2,T .

A standard inverse estimate (see e.g. [8, Theorem 4.5.11]) provides the bound

max
T ∈Tε

‖zε‖0,∞,T � ε−1/2

(∑
T ∈Tε

‖zε‖4
0,4,T

)1/4

.

We plug this into the preceding computation to obtain

∑
T∈Tε

∫
T

|∂iAε|2 dx � ε−1

(∑
T∈Tε

‖zε‖4
0,4,T

)1/2 ∑
T ∈Tε

‖∂izε‖2
0,2,T
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= ε−1‖zε‖2
0,4,ω‖∂izε‖2

0,2,ω.

The last two norms being uniformly bounded, we conclude:

∫
ω

|Qε

2[Aε] −Q2[Aε]|dx �
2∑

i=1

∑
T ∈Tε

ε

∫
T

|∂iQ2[Aε]|dx � ε1/2 → 0. �

The second step is, as usual, to ensure that we can focus on smooth functions for sim-
plicity in the construction of the upper bound:

Lemma 3 The set C∞(ω,R2)∩Z is W 1,2-dense in Z.

Proof This follows from Z = {∇v : v ∈W 2,2(ω)} and the density of C∞(ω) in W 2,2(ω). �

Theorem 7 Let J θ , J θ
ε be given by (30) and (33) respectively. Assume that με →∞ such

that με = o(ε−2) as ε → 0. Then J θ
ε

�→ J θ as ε → 0 with respect to weak convergence in
W 1,2.

Proof Because of Lemma 2 we can substitute Q2 for Q
ε

2 in J θ
ε . Also, by Lemma 3 it is

enough to consider smooth functions for the upper bound. Set

A := (
θ1/2(∇su+ 1

2
z⊗ z),−∇z

)
and Aε :=

(
θ1/2(∇suε + 1

2
zε ⊗ zε),−∇zε

)
.

Step 1: Upper bound.
Let (u, z) ∈ W 1,2(ω;R2)×Z be C∞ up to the boundary and define uε := Iε(u), zε := Iε(z),
where Iε is the nodal interpolant of (32). Note that because u and z are smooth, we can apply
standard interpolation estimates to show strong convergence in W 1,2 of these sequences
towards u and z. By the compact Sobolev embedding W 1,2 ↪→ L4 we have zε → z in L4,
and zε ⊗ zε → z ⊗ z in L2, so we have that Aε → A in L2. Since Q2 is a polynomial of
degree 2, this implies

∫
ω

Q2[Aε]dx →
∫

ω

Q2[A]dx

as ε → 0. By the same interpolation estimate above and the assumption on με we have that
με‖ curl(Îε(z)− z)‖2

0,2 = o(1) as ε → 0, and consequently

J θ
ε (uε, zε) → J θ (u, z).

Step 2: Lower bound.
Let uε, zε ∈ Vε ⊂ W 1,2 with uε ⇀ u, and zε ⇀ z weakly in W 1,2 to u ∈ W 1,2(ω;R2),
z ∈ Z. Because zε ⊗ zε → z ⊗ z in L2, we have that Aε ⇀ A in L2. Moreover, curl zε ⇀

curl z. If linf
ε→0

J θ
ε = ∞, the assertion is trivial. If not, then μεk

∫
ω
| curl zεk

|2 dx ≤ C and

so ‖ curl zεk
‖0,2 → 0 for a subsequence εk → 0. But then curl z = 0. Dropping the (non-

negative) curl term in J θ
ε and by the weak sequential lower semicontinuity of all integrands

involved (Q2 being a convex quadratic function), we then get

linf
ε→0

J θ
ε (uε, zε) ≥

∫
ω

Q2[A]dx = J θ (u, z). �
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The final ingredient of this subsection is a proof that sequences with bounded energy
are (weakly) precompact. The fundamental theorem of �-convergence then shows conver-
gence of global minimisers. In order for this to work, we need to assume conditions in the
space which provide Korn and Poincaré inequalities. We can do this using functions with
zero mean, zero mean of the gradient or zero mean of the antisymmetric gradient as we do
above, but including these conditions in the discrete spaces is not entirely trivial. Because
the energies are invariant under the transformations which are factored out by taking quo-
tient spaces as described in the sections mentioned, it is enough for our purposes to claim
compactness modulo these transformations and to exclude them in the implementation via
projected gradient descent.

Theorem 8 (Compactness) Let (uε, zε)ε>0 be a sequence in (Vε ∩ Xu)
2 with bounded en-

ergy. Then there exist u ∈ W 1,2, z ∈ Z such that uε ⇀ u and zε ⇀ z, in W 1,2.

Proof As above, let Aε := (
θ1/2(∇suε + 1

2 zε ⊗ zε),−∇zε

)
. Note that we cannot use

Lemma 2 to substitute Q2 for Qε
2 since we do not have uniform bounds in W 1,2 by as-

sumption, so we work directly with J θ
ε .

We begin by observing that, as Q2 : R2×2 × R
2×2
sym → R is a convex quadratic function

bounded from below which is strictly convex on R
2×2
sym ×R

2×2
sym , there are constants c̄, C̄ > 0

such that

Q2[E,F ] ≥ c̄|Esym|2 + c̄|Fsym|2 − C̄

for all E,F ∈R
2×2. In particular,

c̄‖∇zε‖2
0,2 ≤ J θ

ε (uε, zε)+ C̄|ω|,
and consequently, by Poincaré’s inequality:

‖zε‖1,2 ≤ C. (34)

We have then a subsequence (not relabeled) weakly converging in W 1,2 to some z ∈W 1,2.
In particular ∇zε ⇀ ∇z and curl zε ⇀ curl z in L2. But also

με‖ curl zε‖2
0,2 ≤ C ⇒ curl zε → 0 in L2,

and therefore curl z = 0, i.e. z ∈ Z.
Now, for the sequence uε we must work with Q

ε

2 instead. First write

c̄|θ1/2∇suε|2 ≤ 2c̄|θ1/2(∇suε + 1

2
zε ⊗ zε)|2 + 2c̄|θ1/2 1

2
zε ⊗ zε|2

≤ 2Q2[Aε] + 2C̄ + 1

2
c̄θ |zε ⊗ zε|2

and thus

|∇suε|2 � Q2[Aε] + |zε|4 +C.

Since this applies pointwise, after (local) interpolation the estimate still holds:

|∇suε| = Îε|∇suε|� Q
ε

2[Aε] + Îε(|zε|4)+C,
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where in the first step we have used that ∇suε is piecewise constant. So

‖∇suε‖0,2 � J θ
ε (uε, zε)+

∫
ω

Îε(|zε|4)dx +C.

We claim now that ‖Îε(|zε|4) − |zε|4‖0,1 =O(ε). Indeed, by the local interpolation esti-
mate (Lemma 1) and Hölder’s inequality for integrals and for sums:

∫
ω

|Îε(|zε|4)− |zε|4| � ε
∑
T∈Tε

∫
T

|∇|zε|4|

� ε
∑
T∈Tε

∫
T

|zε|3|∇zε|

� ε
∑
T∈Tε

‖zε‖3
0,6,T ‖∇zε‖0,2,T

� ε

(∑
T ∈Tε

‖zε‖6
0,6,T

)1/2 (∑
T ∈Tε

‖∇zε‖2
0,2,T

)1/2

� ε‖zε‖3
0,6,ω‖∇zε‖0,2,ω,

and this goes to zero as ε → 0 by (34). But then
∫

ω
Îε(|zε|4) ≤ C and by Korn-Poincaré’s

inequality, the Sobolev embedding W 1,2 ↪→ L4 and the previous bound, we have

‖uε‖2
1,2 � ‖∇suε‖2

0,2 � J θ
ε (uε, zε)+C ≤ C.

The sequence (uε)ε>0 is therefore also weakly precompact in W 1,2(ω;R2) and the proof is
complete. �

5.3 Discrete Gradient Flow

As a concrete example we specialise now to the prototypical example

Iθ
vK(u, v) = θ

2

∫
ω

Q2(∇su+ 1

2
∇v ⊗∇v)dx + 1

24

∫
ω

Q2(∇2v − I )dx,

cf. (15). For each discrete problem, we compute local minimisers using gradient descent, for
which the basic result is the following (see [5, §4.3.1]):

Theorem 9 (Projected gradient descent) Let Vε and J θ
ε be given as in Problem 2 and let

(·, ·) be the scalar product on Vε . The map Fε : Vε × Vε → (Vε × Vε)
′ given by

F θ
ε [uε, zε](ϕε,ψε) := θ

∫
ω

Qε
2[∇suε + 1

2
zε ⊗ zε,∇sϕε + (zε ⊗ψ)s]dx

+ 1

12

∫
ω

Q2[∇zε − I,∇ψε]dx

+ 2με

∫
ω

curl zε curlψε dx, (35)
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is the Fréchet derivative of J θ
ε . Let πu : V 2

ε → (Vε ∩Xu)
2 be the linear orthogonal projection

onto its image. The sequence defined as

wj+1
ε :=wj

ε + αjπud
j
ε

with w0
ε = (u0

ε, z
0
ε) ∈ (Vε ∩Xu)

2 and dj
ε ∈ Vε × Vε such that

(dj
ε , ξε) =−F θ

ε [wj
ε ](ξε) for all ξε ∈ Vε × Vε, (36)

and αj determined with line search is energy decreasing. A line search means computing
the maximal αj ∈ {2−k : k ∈N} such that

J θ
ε (wj

ε + αjπud
j
ε )≤ J θ

ε (wj
ε )− ραj‖πud

j
ε ‖2

2,

where ρ ∈ (0,1/2) is the proverbial fudge factor.

Proof The computation of Fθ
ε is straightforward. To see that the iteration is energy decreas-

ing use (36) and the self-adjointness of πu = π2
u to compute

d

dα

∣∣∣∣
α=0

J θ
ε (wj

ε + απud
j
ε ) = F θ

ε [wj
ε ](πud

j
ε ) =−(πud

j
ε ,πud

j
ε ) ≤ 0.

The existence of αj > 0 is guaranteed as long as J θ
ε ∈ C2(V 2

ε ) because then we can perform
a Taylor expansion and use again (36):

J θ
ε (wj

ε + αjπud
j
ε ) = J θ

ε (wj
ε )− αj‖πud

j
ε ‖2

S +O(α2
j ). �

Remark 5 (Caveat: local and global minimisers) Even though we now know that the discrete
energies correctly approximate the continuous one, as well as any global minimisers, gradi-
ent descent on each discrete problem is only guaranteed to converge to some local minimiser
w	

ε . Lacking some means of tracking a particular w	
ε as ε → 0, there is not much one can

do to prove that our method actually approximates the true global minimisers of Iθ
vK, unless

θ � 1. In this case we know local minimisers to be global (cf. Theorem 6).

5.4 Experimental Results

For the implementation of the discretisation detailed above, we employ the FENICS library
[1] in its version 2017.1.0. The code is available at [10] and includes the model, paral-
lel execution, experiment tracking using SACRED [17] with MONGODB as a backend and
exploration of results with JUPYTER [23] notebooks, OMNIBOARD [41] and a custom ap-
plication. Everything is packaged using DOCKER-COMPOSE for simple reproduction of the
results and one-line deployment.

We set ω = B̂1(0), a (coarse) polygonal approximation of the unit disc and test several
initial conditions. The space Vε has ∼7000 dofs. We implement a general Q2 for isotropic
homogeneous material with the two (scaled) Lamé constants set to those of steel at standard
conditions. We apply neither body forces nor boundary conditions, but hold one interior cell
to fix the value of the free constants. We compute minimisers for increasing values of θ and
με ∼ 1/

√
ε via projected gradient descent (onto the space of admissible functions Vε ∩Xu)

and examine the symmetry of the final solution. The choice ε−1/2 has shown to provide the
fastest convergence results while keeping the violation of the constraint in the order of 10−4
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Fig. 2 Final configurations after
gradient descent starting with a
flat disk viewed from the top.
From left to right, top to bottom:
θ = 1,81,91 and 150. Color
represents the magnitude of the
displacements |w|, from blue at
its minimum (near the center for
small θ ) to red at the maximum
(near the boundary only) (Color
figure online)

(higher penalties have the expected effect of adversely affecting convergence). We track two
magnitudes as measures of symmetry: on the one hand we compute the mean bending strain
over the domain and on the other, as a second simple proxy we employ the quotient of the
lengths of the principal axes.

The first initial configuration is the trivial deformation w0
ε = 0. Note that because the

model is pre-strained, the ground state is non-trivial and the plate “wants” to reach a lower
energy state. In Fig. 2 we depict the results of running the energy minimisation procedure
for multiple values of θ .

We further highlight the behaviour of the solution as a function of θ in Fig. 3. In the first
plot we compute the mean bending strains

1

|ω|
∫

ω

(∇2v)ii dx with i ∈ {1,2}.

As mentioned, these act as an easy to compute proxy for the (mean) principal curvatures.
We observe how as θ increases both strains decrease almost by an equal amount as the
body gradually opens up and flattens out, while retaining its radial symmetry. However,
around θ ≈ 86 a stark change takes place and one of the principal strains decreases while
the other increases. This reflects the abrupt change of the minimiser to a cylindrical shape.
We observe the same phenomenon with the quotient of the principal axes of the deformed
disk in the right plot of the same figure.

The second initial condition tested is an orthotropically skewed paraboloid. Basically, a
spherical cap is pressed from the sides to obtain a “potato chip”, see Fig. 4. Testing this
shape will highlight the effect of the initial configuration on the final curvature. We examine
its strains and symmetry in Fig. 5.

Again there is a critical value of θ ≈ 50 around which the shape of the minimiser drasti-
cally changes. Note however how the change is now gradual and we see intermediate shapes.

Focusing in the critical region and comparing the energy values we see that the config-
urations with flat initial condition have a slightly lower energy, around 0.2% far from the
transition and up to 0.8% around it. Yet we believe this to be a lack of precision in the dis-
cretisation around the critical region requiring a more detailed and thorough investigation
which has to be postponed to future work.
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Fig. 3 Mean principal strains (left) and symmetry (right) of the minimiser as a function of θ for the flat disk

Fig. 4 Initial (left) and final (right) states starting with skewed paraboloid. From left to right, top to bottom,
θ = 1,51,61 and 91

Fig. 5 Mean principal strains (left) and symmetry (right) of the minimiser as a function of θ for the skewed
paraboloid
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